
Linux Programming

D.Koteswararao Page 1

"Unit-I - Linux Utilities"

Introduction to Linux

Linux is a Unix-like computer operating system assembled under the model of free and open

source software development and distribution. The defining component of Linux is the Linux

kernel, an operating system kernel first released 5 October 1991 by Linus Torvalds.

Linux was originally developed as a free operating system for Intel x86-based personal

computers. It has since been ported to more computer hardware platforms than any other

operating system. It is a leading operating system on servers and other big iron systems such as

mainframe computers and supercomputers more than 90% of today's 500 fastest supercomputers

run some variant of Linux, including the 10 fastest. Linux also runs on embedded systems

(devices where the operating system is typically built into the firmware and highly tailored to the

system) such as mobile phones, tablet computers, network routers, televisions and video game

consoles; the Android system in wide use on mobile devices is built on the Linux kernel.

A distribution oriented toward desktop use will typically include the X Window System and an

accompanying desktop environment such as GNOME or KDE Plasma. Some such distributions

may include a less resource intensive desktop such as LXDE or Xfce for use on older or less

powerful computers. A distribution intended to run as a server may omit all graphical

environments from the standard install and instead include other software such as the Apache

HTTP Server and an SSH server such as OpenSSH. Because Linux is freely redistributable,

anyone may create a distribution for any intended use. Applications commonly used with

desktop Linux systems include the Mozilla Firefox web browser, the LibreOffice office

application suite, and the GIMP image editor.

Since the main supporting user space system tools and libraries originated in the GNU Project,

initiated in 1983 by Richard Stallman, the Free Software Foundation prefers the name

GNU/Linux.

History

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

http://en.wikipedia.org/wiki/Unix-like
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Free_and_open_source_software
http://en.wikipedia.org/wiki/Free_and_open_source_software
http://en.wikipedia.org/wiki/Linux_kernel
http://en.wikipedia.org/wiki/Linux_kernel
http://en.wikipedia.org/wiki/Operating_system_kernel
http://en.wikipedia.org/wiki/Linus_Torvalds
http://en.wikipedia.org/wiki/Intel_x86
http://en.wikipedia.org/wiki/Porting
http://en.wikipedia.org/wiki/Server_%28computing%29
http://en.wikipedia.org/wiki/Big_iron
http://en.wikipedia.org/wiki/Mainframe_computer
http://en.wikipedia.org/wiki/Supercomputer
http://en.wikipedia.org/wiki/TOP500
http://en.wikipedia.org/wiki/Embedded_system
http://en.wikipedia.org/wiki/Firmware
http://en.wikipedia.org/wiki/Tablet_computer
http://en.wikipedia.org/wiki/Router_%28computing%29
http://en.wikipedia.org/wiki/Video_game_console
http://en.wikipedia.org/wiki/Video_game_console
http://en.wikipedia.org/wiki/Android_%28operating_system%29
http://en.wikipedia.org/wiki/X_Window_System
http://en.wikipedia.org/wiki/Desktop_environment
http://en.wikipedia.org/wiki/GNOME
http://en.wikipedia.org/wiki/KDE_Plasma_Workspaces
http://en.wikipedia.org/wiki/LXDE
http://en.wikipedia.org/wiki/Xfce
http://en.wikipedia.org/wiki/Apache_HTTP_Server
http://en.wikipedia.org/wiki/Apache_HTTP_Server
http://en.wikipedia.org/wiki/SSH_server
http://en.wikipedia.org/wiki/OpenSSH
http://en.wikipedia.org/wiki/Mozilla_Firefox
http://en.wikipedia.org/wiki/LibreOffice
http://en.wikipedia.org/wiki/GIMP
http://en.wikipedia.org/wiki/User_space
http://en.wikipedia.org/wiki/GNU_Project
http://en.wikipedia.org/wiki/Richard_Stallman
http://en.wikipedia.org/wiki/Free_Software_Foundation
http://en.wikipedia.org/wiki/GNU/Linux_naming_controversy

Linux Programming

D.Koteswararao Page 2

Unix

The Unix operating system was conceived and implemented in 1969 at AT&T's Bell

Laboratories in the United States by Ken Thompson, Dennis Ritchie, Douglas McIlroy, and Joe

Ossanna. It was first released in 1971 and was initially entirely written in assembly language, a

common practice at the time. Later, in a key pioneering approach in 1973, Unix was re-written in

the programming language C by Dennis Ritchie (with exceptions to the kernel and I/O). The

availability of an operating system written in a high-level language allowed easier portability to

different computer platforms.

Today, Linux systems are used in every domain, from embedded systems to supercomputers, and

have secured a place in server installations often using the popular LAMP application stack. Use

of Linux distributions in home and enterprise desktops has been growing. They have also gained

popularity with various local and national governments. The federal government of Brazil is well

known for its support for Linux. News of the Russian military creating its own Linux distribution

has also surfaced, and has come to fruition as the G.H.ost Project. The Indian state of Kerala has

gone to the extent of mandating that all state high schools run Linux on their computers.

Design

A Linux-based system is a modular Unix-like operating system. It derives much of its basic

design from principles established in Unix during the 1970s and 1980s. Such a system uses a

monolithic kernel, the Linux kernel, which handles process control, networking, and peripheral

and file system access. Device drivers are either integrated directly with the kernel or added as

modules loaded while the system is running.

Separate projects that interface with the kernel provide much of the system's higher-level

functionality. The GNU userland is an important part of most Linux-based systems, providing

the most common implementation of the C library, a popular shell, and many of the common

Unix tools which carry out many basic operating system tasks. The graphical user interface (or

GUI) used by most Linux systems is built on top of an implementation of the X Window System.

Programming on Linux

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

http://en.wikipedia.org/wiki/Unix
http://en.wikipedia.org/wiki/AT%26T
http://en.wikipedia.org/wiki/Ken_Thompson
http://en.wikipedia.org/wiki/Dennis_Ritchie
http://en.wikipedia.org/wiki/Douglas_McIlroy
http://en.wikipedia.org/wiki/Joe_Ossanna
http://en.wikipedia.org/wiki/Joe_Ossanna
http://en.wikipedia.org/wiki/Assembly_language
http://en.wikipedia.org/wiki/C_%28programming_language%29
http://en.wikipedia.org/wiki/Dennis_Ritchie
http://en.wikipedia.org/wiki/Porting
http://en.wikipedia.org/wiki/Embedded_system
http://en.wikipedia.org/wiki/Supercomputer
http://en.wikipedia.org/wiki/Server_%28computing%29
http://en.wikipedia.org/wiki/LAMP_%28software_bundle%29
http://en.wikipedia.org/wiki/Kerala
http://en.wikipedia.org/wiki/Unix-like
http://en.wikipedia.org/wiki/Monolithic_kernel
http://en.wikipedia.org/wiki/Linux_kernel
http://en.wikipedia.org/wiki/Peripheral
http://en.wikipedia.org/wiki/File_system
http://en.wikipedia.org/wiki/Device_drivers
http://en.wikipedia.org/wiki/Userland_%28computing%29
http://en.wikipedia.org/wiki/C_standard_library
http://en.wikipedia.org/wiki/Shell_%28computing%29
http://en.wikipedia.org/wiki/Unix_tool
http://en.wikipedia.org/wiki/Graphical_user_interface
http://en.wikipedia.org/wiki/X_Window_System

Linux Programming

D.Koteswararao Page 3

Most Linux distributions support dozens of programming languages. The original development

tools used for building both Linux applications and operating system programs are found within

the GNU toolchain, which includes the GNU Compiler Collection (GCC) and the GNU build

system. Amongst others, GCC provides compilers for Ada, C, C++, Java, and Fortran. First

released in 2003, the Low Level Virtual Machine project provides an alternative open-source

compiler for many languages. Proprietary compilers for Linux include the Intel C++ Compiler,

Sun Studio, and IBM XL C/C++ Compiler. BASIC in the form of Visual Basic is supported in

such forms as Gambas, FreeBASIC, and XBasic.

Most distributions also include support for PHP, Perl, Ruby, Python and other dynamic

languages. While not as common, Linux also supports C# (via Mono), Vala, and Scheme. A

number of Java Virtual Machines and development kits run on Linux, including the original Sun

Microsystems JVM (HotSpot), and IBM's J2SE RE, as well as many open-source projects like

Kaffe and JikesRVM.

Linux Advantages

1. Low cost: You don‘t need to spend time and money to obtain licenses since Linux and

much of its software come with the GNU General Public License. You can start to work

immediately without worrying that your software may stop working anytime because the

free trial version expires. Additionally, there are large repositories from which you can

freely download high quality software for almost any task you can think of.

2. Stability: Linux doesn‘t need to be rebooted periodically to maintain performance levels. It

doesn‘t freeze up or slow down over time due to memory leaks and such. Continuous up-

times of hundreds of days (up to a year or more) are not uncommon.

3. Performance: Linux provides persistent high performance on workstations and on

networks. It can handle unusually large numbers of users simultaneously, and can make old

computers sufficiently responsive to be useful again.

4. Network friendliness: Linux was developed by a group of programmers over the Internet

and has therefore strong support for network functionality; client and server systems can be

easily set up on any computer running Linux. It can perform tasks such as network backups

faster and more reliably than alternative systems.

5. Flexibility: Linux can be used for high performance server applications, desktop

applications, and embedded systems. You can save disk space by only installing the

components needed for a particular use. You can restrict the use of specific computers by

installing for example only selected office applications instead of the whole suite.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/GNU_toolchain
http://en.wikipedia.org/wiki/GNU_Compiler_Collection
http://en.wikipedia.org/wiki/GNU_build_system
http://en.wikipedia.org/wiki/GNU_build_system
http://en.wikipedia.org/wiki/Ada_%28programming_language%29
http://en.wikipedia.org/wiki/C_%28programming_language%29
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Java_%28programming_language%29
http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/Low_Level_Virtual_Machine
http://en.wikipedia.org/wiki/Proprietary_software
http://en.wikipedia.org/wiki/Intel_C%2B%2B_Compiler
http://en.wikipedia.org/wiki/Sun_Studio_%28software%29
http://en.wikipedia.org/wiki/C_%28programming_language%29
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/BASIC
http://en.wikipedia.org/wiki/Visual_Basic
http://en.wikipedia.org/wiki/Gambas
http://en.wikipedia.org/wiki/FreeBASIC
http://en.wikipedia.org/wiki/XBasic
http://en.wikipedia.org/wiki/PHP
http://en.wikipedia.org/wiki/Perl
http://en.wikipedia.org/wiki/Ruby_programming_language
http://en.wikipedia.org/wiki/Python_programming_language
http://en.wikipedia.org/wiki/Dynamic_programming_language
http://en.wikipedia.org/wiki/Dynamic_programming_language
http://en.wikipedia.org/wiki/C_Sharp_%28programming_language%29
http://en.wikipedia.org/wiki/Mono_%28software%29
http://en.wikipedia.org/wiki/Vala_%28programming_language%29
http://en.wikipedia.org/wiki/Scheme_programming_language
http://en.wikipedia.org/wiki/Java_Virtual_Machine
http://en.wikipedia.org/wiki/HotSpot
http://en.wikipedia.org/wiki/Kaffe
http://en.wikipedia.org/wiki/JikesRVM

Linux Programming

D.Koteswararao Page 4

6. Compatibility: It runs all common Unix software packages and can process all common

file formats.

7. Choice: The large number of Linux distributions gives you a choice. Each distribution is

developed and supported by a different organization. You can pick the one you like best;

the core functionalities are the same; most software runs on most distributions.

8. Fast and easy installation: Most Linux distributions come with user-friendly installation

and setup programs. Popular Linux distributions come with tools that make installation of

additional software very user friendly as well.

9. Full use of hard disk: Linux continues work well even when the hard disk is almost full.

10. Multitasking: Linux is designed to do many things at the same time; e.g., a large printing

job in the background won‘t slow down your other work.

11. Security: Linux is one of the most secure operating systems. ―Walls‖ and flexible file

access permission systems prevent access by unwanted visitors or viruses. Linux users have

to option to select and safely download software, free of charge, from online repositories

containing thousands of high quality packages. No purchase transactions requiring credit

card numbers or other sensitive personal information are necessary.

12. Open Source: If you develop software that requires knowledge or modification of the

operating system code, Linux‘s source code is at your fingertips. Most Linux applications

are Open Source as well.

The difference between Linux and UNIX operating systems?

UNIX is copyrighted name only big companies are allowed to use the UNIX copyright and

name, so IBM AIX and Sun Solaris and HP-UX all are UNIX operating systems. The Open

Group holds the UNIX trademark in trust for the industry, and manages the UNIX trademark

licensing program.

Most UNIX systems are commercial in nature.

Linux is a UNIX Clone

But if you consider Portable Operating System Interface (POSIX) standards then Linux can be

considered as UNIX. To quote from Official Linux kernel README file:

Linux is a Unix clone written from scratch by Linus Torvalds with assistance from a loosely-knit

team of hackers across the Net. It aims towards POSIX compliance.

However, "Open Group" do not approve of the construction "Unix-like", and consider it misuse

of their UNIX trademark.

Linux Is Just a Kernel

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

http://www.unix.org/
http://www.unix.org/

Linux Programming

D.Koteswararao Page 5

Linux is just a kernel. All Linux distributions includes GUI system + GNU utilities (such as cp,

mv, ls,date, bash etc) + installation & management tools + GNU c/c++ Compilers + Editors (vi)

+ and various applications (such as OpenOffice, Firefox). However, most UNIX operating

systems are considered as a complete operating system as everything come from a single source

or vendor.

As I said earlier Linux is just a kernel and Linux distribution makes it complete usable operating

systems by adding various applications. Most UNIX operating systems comes with A-Z

programs such as editor, compilers etc. For example HP-UX or Solaris comes with A-Z

programs.

License and cost

Linux is Free (as in beer [freedom]). You can download it from the Internet or redistribute it

under GNU licenses. You will see the best community support for Linux. Most UNIX like

operating systems are not free (but this is changing fast, for example OpenSolaris UNIX).

However, some Linux distributions such as Redhat / Novell provides additional Linux support,

consultancy, bug fixing, and training for additional fees.

User-Friendly

Linux is considered as most user friendly UNIX like operating systems. It makes it easy to install

sound card, flash players, and other desktop goodies. However, Apple OS X is most popular

UNIX operating system for desktop usage.

Security Firewall Software

Linux comes with open source netfilter/iptables based firewall tool to protect your server and

desktop from the crackers and hackers. UNIX operating systems comes with its own firewall

product (for example Solaris UNIX comes with ipfilter based firewall) or you need to purchase a

3rd party software such as Checkpoint UNIX firewall.

Backup and Recovery Software

UNIX and Linux comes with different set of tools for backing up data to tape and other backup

media. However, both of them share some common tools such as tar, dump/restore, and cpio etc.

File Systems

 Linux by default supports and use ext3 or ext4 file systems.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 6

 UNIX comes with various file systems such as jfs, gpfs (AIX), jfs, gpfs (HP-UX), jfs, gpfs

(Solaris).

System Administration Tools

1. UNIX comes with its own tools such as SAM on HP-UX.

2. Suse Linux comes with Yast

3. Redhat Linux comes with its own gui tools called redhat-config-*.

However, editing text config file and typing commands are most popular options for sys admin

work under UNIX and Linux.

System Startup Scripts

Almost every version of UNIX and Linux comes with system initialization script but they are

located in different directories:

1. HP-UX - /sbin/init.d

2. AIX - /etc/rc.d/init.d

3. Linux - /etc/init.d

End User Perspective

The differences are not that big for the average end user. They will use the same shell (e.g. bash

or ksh) and other development tools such as Perl or Eclipse development tool.

System Administrator Perspective

Again, the differences are not that big for the system administrator. However, you may notice

various differences while performing the following operations:

1. Software installation procedure

2. Hardware device names

3. Various admin commands or utilities

4. Software RAID devices and mirroring

5. Logical volume management

6. Package management

7. Patch management

UNIX Operating System Names

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 7

A few popular names:

1. HP-UX

2. IBM AIX

3. Sun Solairs

4. Mac OS X

5. IRIX

Linux Distribution (Operating System) Names

A few popular names:

1. Redhat Enterprise Linux

2. Fedora Linux

3. Debian Linux

4. Suse Enterprise Linux

5. Ubuntu Linux

Common Things Between Linux & UNIX

Both share many common applications such as:

1. GUI, file, and windows managers (KDE, Gnome)

2. Shells (ksh, csh, bash)

3. Various office applications such as OpenOffice.org

4. Development tools (perl, php, python, GNU c/c++ compilers)

5. Posix interface

10 fundamental differences between Linux and Windows

#1: Full access vs. no access

Having access to the source code is probably the single most significant difference between

Linux and Windows. The fact that Linux belongs to the GNU Public License ensures that users

(of all sorts) can access (and alter) the code to the very kernel that serves as the foundation of the

Linux operating system. You want to peer at the Windows code? Good luck. Unless you are a

member of a very select (and elite, to many) group, you will never lay eyes on code making up

the Windows operating system.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 8

You can look at this from both sides of the fence. Some say giving the public access to the code

opens the operating system (and the software that runs on top of it) to malicious developers who

will take advantage of any weakness they find. Others say that having full access to the code

helps bring about faster improvements and bug fixes to keep those malicious developers from

being able to bring the system down. I have, on occasion, dipped into the code of one Linux

application or another, and when all was said and done, was happy with the results. Could I have

done that with a closed-source Windows application? No.

#2: Licensing freedom vs. licensing restrictions

Along with access comes the difference between the licenses. I‘m sure that every IT professional

could go on and on about licensing of PC software. But let‘s just look at the key aspect of the

licenses (without getting into legalese). With a Linux GPL-licensed operating system, you are

free to modify that software and use and even republish or sell it (so long as you make the code

available). Also, with the GPL, you can download a single copy of a Linux distribution (or

application) and install it on as many machines as you like. With the Microsoft license, you can

do none of the above. You are bound to the number of licenses you purchase, so if you purchase

10 licenses, you can legally install that operating system (or application) on only 10 machines.

#3: Online peer support vs. paid help-desk support

This is one issue where most companies turn their backs on Linux. But it‘s really not necessary.

With Linux, you have the support of a huge community via forums, online search, and plenty of

dedicated Web sites. And of course, if you feel the need, you can purchase support contracts

from some of the bigger Linux companies (Red Hat and Novell for instance).

However, when you use the peer support inherent in Linux, you do fall prey to time. You could

have an issue with something, send out e-mail to a mailing list or post on a forum, and within 10

minutes be flooded with suggestions. Or these suggestions could take hours of days to come in. It

seems all up to chance sometimes. Still, generally speaking, most problems with Linux have

been encountered and documented. So chances are good you‘ll find your solution fairly quickly.

On the other side of the coin is support for Windows. Yes, you can go the same route with

Microsoft and depend upon your peers for solutions. There are just as many help

sites/lists/forums for Windows as there are for Linux. And you can purchase support from

Microsoft itself. Most corporate higher-ups easily fall victim to the safety net that having a

support contract brings. But most higher-ups haven‘t had to depend up on said support contract.

Of the various people I know who have used either a Linux paid support contract or a Microsoft

paid support contract, I can‘t say one was more pleased than the other. This of course begs the

question ―Why do so many say that Microsoft support is superior to Linux paid support?‖

#4: Full vs. partial hardware support

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 9

One issue that is slowly becoming nonexistent is hardware support. Years ago, if you wanted to

install Linux on a machine you had to make sure you hand-picked each piece of hardware or

your installation would not work 100 percent. I can remember, back in 1997-ish, trying to figure

out why I couldn‘t get Caldera Linux or Red Hat Linux to see my modem. After much looking

around, I found I was the proud owner of a Winmodem. So I had to go out and purchase a US

Robotics external modem because that was the one modem I knew would work. This is not so

much the case now. You can grab a PC (or laptop) and most likely get one or more Linux

distributions to install and work nearly 100 percent. But there are still some exceptions. For

instance, hibernate/suspend remains a problem with many laptops, although it has come a long

way.

With Windows, you know that most every piece of hardware will work with the operating

system. Of course, there are times (and I have experienced this over and over) when you will

wind up spending much of the day searching for the correct drivers for that piece of hardware

you no longer have the install disk for. But you can go out and buy that 10-cent Ethernet card

and know it‘ll work on your machine (so long as you have, or can find, the drivers). You also can

rest assured that when you purchase that insanely powerful graphics card, you will probably be

able to take full advantage of its power.

#5: Command line vs. no command line

No matter how far the Linux operating system has come and how amazing the desktop

environment becomes, the command line will always be an invaluable tool for administration

purposes. Nothing will ever replace my favorite text-based editor, ssh, and any given command-

line tool. I can‘t imagine administering a Linux machine without the command line. But for the

end user — not so much. You could use a Linux machine for years and never touch the

command line. Same with Windows. You can still use the command line with Windows, but not

nearly to the extent as with Linux. And Microsoft tends to obfuscate the command prompt from

users. Without going to Run and entering cmd (or command, or whichever it is these days), the

user won‘t even know the command-line tool exists. And if a user does get the Windows

command line up and running, how useful is it really?

#6: Centralized vs. noncentralized application installation

The heading for this point might have thrown you for a loop. But let‘s think about this for a

second. With Linux you have (with nearly every distribution) a centralized location where you

can search for, add, or remove software. I‘m talking about package management systems, such as

Synaptic. With Synaptic, you can open up one tool, search for an application (or group of

applications), and install that application without having to do any Web searching (or

purchasing).

Windows has nothing like this. With Windows, you must know where to find the software you

want to install, download the software (or put the CD into your machine), and run setup.exe or

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 10

install.exe with a simple double-click. For many years, it was thought that installing applications

on Windows was far easier than on Linux. And for many years, that thought was right on target.

Not so much now. Installation under Linux is simple, painless, and centralized.

#7: Flexibility vs. rigidity

I always compare Linux (especially the desktop) and Windows to a room where the floor and

ceiling are either movable or not. With Linux, you have a room where the floor and ceiling can

be raised or lowered, at will, as high or low as you want to make them. With Windows, that floor

and ceiling are immovable. You can‘t go further than Microsoft has deemed it necessary to go.

Take, for instance, the desktop. Unless you are willing to pay for and install a third-party

application that can alter the desktop appearance, with Windows you are stuck with what

Microsoft has declared is the ideal desktop for you. With Linux, you can pretty much make your

desktop look and feel exactly how you want/need. You can have as much or as little on your

desktop as you want. From simple flat Fluxbox to a full-blown 3D Compiz experience, the Linux

desktop is as flexible an environment as there is on a computer.

#8: Fanboys vs. corporate types

I wanted to add this because even though Linux has reached well beyond its school-project roots,

Linux users tend to be soapbox-dwelling fanatics who are quick to spout off about why you

should be choosing Linux over Windows. I am guilty of this on a daily basis (I try hard to recruit

new fanboys/girls), and it‘s a badge I wear proudly. Of course, this is seen as less than

professional by some. After all, why would something worthy of a corporate environment have

or need cheerleaders? Shouldn‘t the software sell itself? Because of the open source nature of

Linux, it has to make do without the help of the marketing budgets and deep pockets of

Microsoft. With that comes the need for fans to help spread the word. And word of mouth is the

best friend of Linux.

Some see the fanaticism as the same college-level hoorah that keeps Linux in the basements for

LUG meetings and science projects. But I beg to differ. Another company, thanks to the

phenomenon of a simple music player and phone, has fallen into the same fanboy fanaticism, and

yet that company‘s image has not been besmirched because of that fanaticism. Windows does

not have these same fans. Instead, Windows has a league of paper-certified administrators who

believe the hype when they hear the misrepresented market share numbers reassuring them they

will be employable until the end of time.

#9: Automated vs. nonautomated removable media

I remember the days of old when you had to mount your floppy to use it and unmount it to

remove it. Well, those times are drawing to a close — but not completely. One issue that plagues

new Linux users is how removable media is used. The idea of having to manually ―mount‖ a CD

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 11

drive to access the contents of a CD is completely foreign to new users. There is a reason this is

the way it is. Because Linux has always been a multiuser platform, it was thought that forcing a

user to mount a media to use it would keep the user‘s files from being overwritten by another

user. Think about it: On a multiuser system, if everyone had instant access to a disk that had been

inserted, what would stop them from deleting or overwriting a file you had just added to the

media? Things have now evolved to the point where Linux subsystems are set up so that you can

use a removable device in the same way you use them in Windows. But it‘s not the norm. And

besides, who doesn‘t want to manually edit the /etc/fstab fle?

#10: Multilayered run levels vs. a single-layered run level

I couldn‘t figure out how best to title this point, so I went with a description. What I‘m talking

about is Linux‘ inherent ability to stop at different run levels. With this, you can work from

either the command line (run level 3) or the GUI (run level 5). This can really save your socks

when X Windows is fubared and you need to figure out the problem. You can do this by booting

into run level 3, logging in as root, and finding/fixing the problem.

With Windows, you‘re lucky to get to a command line via safe mode — and then you may or

may not have the tools you need to fix the problem. In Linux, even in run level 3, you can still

get and install a tool to help you out (hello apt-get install APPLICATION via the command line).

Having different run levels is helpful in another way. Say the machine in question is a Web or

mail server. You want to give it all the memory you have, so you don‘t want the machine to boot

into run level 5. However, there are times when you do want the GUI for administrative purposes

(even though you can fully administer a Linux server from the command line). Because you can

run the startxcommand from the command line at run level 3, you can still start up X Windows

and have your GUI as well. With Windows, you are stuck at the Graphical run level unless you

hit a serious problem.

File Handling utilities:

cat COMMAND:

 cat linux command concatenates files and print it on the standard output.

SYNTAX:

 The Syntax is

 cat [OPTIONS] [FILE]...

OPTIONS:

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 12

-A Show all.

-b Omits line numbers for blank space in the output.

-e A $ character will be printed at the end of each line prior to a new line.

-E Displays a $ (dollar sign) at the end of each line.

-n Line numbers for all the output lines.

-s If the output has multiple empty lines it replaces it with one empty line.

-T Displays the tab characters in the output.

-v
Non-printing characters (with the exception of tabs, new-lines and form-feeds)

are printed visibly.

EXAMPLE:

1. To Create a new file:

cat > file1.txt

This command creates a new file file1.txt. After typing into the file press control+d (^d)

simultaneously to end the file.

2. To Append data into the file:

cat >> file1.txt

To append data into the same file use append operator >> to write into the file, else the

file will be overwritten (i.e., all of its contents will be erased).

3. To display a file:

cat file1.txt

This command displays the data in the file.

4. To concatenate several files and display:

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 13

cat file1.txt file2.txt

The above cat command will concatenate the two files (file1.txt and file2.txt) and it will

display the output in the screen. Some times the output may not fit the monitor screen. In

such situation you can print those files in a new file or display the file using less

command.

cat file1.txt file2.txt | less

5. To concatenate several files and to transfer the output to another file.

cat file1.txt file2.txt > file3.txt

In the above example the output is redirected to new file file3.txt. The cat command will

create new file file3.txt and store the concatenated output into file3.txt.

rm COMMAND:

 rm linux command is used to remove/delete the file from the directory.

SYNTAX:

 The Syntax is

 rm [options..] [file | directory]

OPTIONS:

-f Remove all files in a directory without prompting the user.

-i
Interactive. With this option, rm prompts for confirmation before removing

any files.

-r (or) -R

Recursively remove directories and subdirectories in the argument list. The

directory will be emptied of files and removed. The user is normally

prompted for removal of any write-protected files which the directory

contains.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 14

EXAMPLE:

1. To Remove / Delete a file:

rm file1.txt

Here rm command will remove/delete the file file1.txt.

2. To delete a directory tree:

rm -ir tmp

This rm command recursively removes the contents of all subdirectories of the tmp

directory, prompting you regarding the removal of each file, and then removes the tmp

directory itself.

3. To remove more files at once

rm file1.txt file2.txt

rm command removes file1.txt and file2.txt files at the same time.

cd COMMAND:

 cd command is used to change the directory.

SYNTAX:

 The Syntax is

 cd [directory | ~ | ./ | ../ | -]

OPTIONS:

-L Use the physical directory structure.

-P Forces symbolic links.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 15

EXAMPLE:

1. cd linux-command

This command will take you to the sub-directory(linux-command) from its parent

directory.

2. cd ..

This will change to the parent-directory from the current working directory/sub-directory.

3. cd ~

This command will move to the user's home directory which is "/home/username".

cp COMMAND:

 cp command copy files from one location to another. If the destination is an existing file, then

the file is overwritten; if the destination is an existing directory, the file is copied into the

directory (the directory is not overwritten).

SYNTAX:

 The Syntax is

 cp [OPTIONS]... SOURCE DEST

 cp [OPTIONS]... SOURCE... DIRECTORY

 cp [OPTIONS]... --target-directory=DIRECTORY SOURCE...

OPTIONS:

-a same as -dpR.

--backup[=CONTROL] make a backup of each existing destination file

-b like --backup but does not accept an argument.

-f if an existing destination file cannot be opened, remove it and try

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 16

again.

-p same as --preserve=mode,ownership,timestamps.

--

preserve[=ATTR_LIST]

preserve the specified attributes (default:

mode,ownership,timestamps) and security contexts, if possible

additional attributes: links, all.

--no-

preserve=ATTR_LIST
don't preserve the specified attribute.

--parents append source path to DIRECTORY.

EXAMPLE:

1. Copy two files:

cp file1 file2

The above cp command copies the content of file1.php to file2.php.

2. To backup the copied file:

cp -b file1.php file2.php

Backup of file1.php will be created with '~' symbol as file2.php~.

3. Copy folder and subfolders:

cp -R scripts scripts1

The above cp command copy the folder and subfolders from scripts to scripts1.

ls COMMAND:

 ls command lists the files and directories under current working directory.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 17

SYNTAX:

 The Syntax is

 ls [OPTIONS]... [FILE]

OPTIONS:

-l
Lists all the files, directories and their mode, Number of links, owner of the

file, file size, Modified date and time and filename.

-t Lists in order of last modification time.

-a Lists all entries including hidden files.

-d Lists directory files instead of contents.

-p Puts slash at the end of each directories.

-u List in order of last access time.

-i Display inode information.

-ltr List files order by date.

-lSr List files order by file size.

EXAMPLE:

1. Display root directory contents:

ls /

lists the contents of root directory.

2. Display hidden files and directories:

ls -a

lists all entries including hidden files and directories.

3. Display inode information:

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 18

ls -i

7373073 book.gif

7373074 clock.gif

7373082 globe.gif

7373078 pencil.gif

7373080 child.gif

7373081 email.gif

7373076 indigo.gif

The above command displays filename with inode value.

ln COMMAND:

 ln command is used to create link to a file (or) directory. It helps to provide soft link for

desired files. Inode will be different for source and destination.

SYNTAX:

 The Syntax is

 ln [options] existingfile(or directory)name newfile(or directory)name

OPTIONS:

-f
Link files without questioning the user, even if the mode of target forbids

writing. This is the default if the standard input is not a terminal.

-n Does not overwrite existing files.

-s Used to create soft links.

EXAMPLE:

1. ln -s file1.txt file2.txt

Creates a symbolic link to 'file1.txt' with the name of 'file2.txt'. Here inode for 'file1.txt'

and 'file2.txt' will be different.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 19

2. ln -s nimi nimi1

Creates a symbolic link to 'nimi' with the name of 'nimi1'.

chown COMMAND:

 chown command is used to change the owner / user of the file or directory. This is an admin

command, root user only can change the owner of a file or directory.

SYNTAX:

 The Syntax is

 chown [options] newowner filename/directoryname

OPTIONS:

-R
Change the permission on files that are in the subdirectories of the directory

that you are currently in.

-c Change the permission for each file.

-f
Prevents chown from displaying error messages when it is unable to change

the ownership of a file.

EXAMPLE:

1. chown hiox test.txt

The owner of the 'test.txt' file is root, Change to new user hiox.

2. chown -R hiox test

The owner of the 'test' directory is root, With -R option the files and subdirectories user

also gets changed.

3. chown -c hiox calc.txt

Here change the owner for the specific 'calc.txt' file only.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 20

chmod COMMAND:

 chmod command allows you to alter / Change access rights to files and directories.

File Permission is given for users,group and others as,

Read Write Execute

User

Group

Others

Permission 000

Symbolic Mode ___ ___ ___

SYNTAX:

 The Syntax is

 chmod [options] [MODE] FileName

File Permission

File Permission

0 none

1 execute only

2 write only

3 write and execute

4 read only

5 read and execute

6 read and write

7 set all permissions

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 21

OPTIONS:

-c Displays names of only those files whose permissions are being changed

-f Suppress most error messages

-R Change files and directories recursively

-v Output version information and exit.

EXAMPLE:

1. To view your files with what permission they are:

ls -alt

This command is used to view your files with what permission they are.

2. To make a file readable and writable by the group and others.

chmod 066 file1.txt

3. To allow everyone to read, write, and execute the file

chmod 777 file1.txt

mkdir COMMAND:

 mkdir command is used to create one or more directories.

SYNTAX:

 The Syntax is

 mkdir [options] directories

OPTIONS:

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 22

-m Set the access mode for the new directories.

-p Create intervening parent directories if they don't exist.

-v Print help message for each directory created.

EXAMPLE:

1. Create directory:

mkdir test

The above command is used to create the directory 'test'.

2. Create directory and set permissions:

mkdir -m 666 test

The above command is used to create the directory 'test' and set the read and write

permission.

rmdir COMMAND:

 rmdir command is used to delete/remove a directory and its subdirectories.

SYNTAX:

 The Syntax is

 rmdir [options..] Directory

OPTIONS:

-p
Allow users to remove the directory dirname and its parent directories which

become empty.

EXAMPLE:

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 23

1. To delete/remove a directory

rmdir tmp

rmdir command will remove/delete the directory tmp if the directory is empty.

2. To delete a directory tree:

rm -ir tmp

This command recursively removes the contents of all subdirectories of the tmp

directory, prompting you regarding the removal of each file, and then removes the tmp

directory itself.

mv COMMAND:

 mv command which is short for move. It is used to move/rename file from one directory to

another. mv command is different from cp command as it completely removes the file from the

source and moves to the directory specified, where cp command just copies the content from one

file to another.

SYNTAX:

 The Syntax is

 mv [-f] [-i] oldname newname

OPTIONS:

-f
This will not prompt before overwriting (equivalent to --reply=yes). mv -f will

move the file(s) without prompting even if it is writing over an existing target.

-i Prompts before overwriting another file.

EXAMPLE:

1. To Rename / Move a file:

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 24

mv file1.txt file2.txt

This command renames file1.txt as file2.txt

2. To move a directory

mv hscripts tmp

In the above line mv command moves all the files, directories and sub-directories from

hscripts folder/directory to tmp directory if the tmp directory already exists. If there is no

tmp directory it rename's the hscripts directory as tmp directory.

3. To Move multiple files/More files into another directory

mv file1.txt tmp/file2.txt newdir

This command moves the files file1.txt from the current directory and file2.txt from the

tmp folder/directory to newdir.

diff COMMAND:

 diff command is used to find differences between two files.

SYNTAX:

 The Syntax is

 diff [options..] from-file to-file

OPTIONS:

-a Treat all files as text and compare them line-by-line.

-b Ignore changes in amount of white space.

-c Use the context output format.

-e Make output that is a valid ed script.

-H Use heuristics to speed handling of large files that have numerous scattered

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 25

small changes.

-i Ignore changes in case; consider upper- and lower-case letters equivalent.

-n
Prints in RCS-format, like -f except that each command specifies the number

of lines affected.

-q
Output RCS-format diffs; like -f except that each command specifies the

number of lines affected.

-r When comparing directories, recursively compare any subdirectories found.

-s Report when two files are the same.

-w Ignore white space when comparing lines.

-y Use the side by side output format.

EXAMPLE:

Lets create two files file1.txt and file2.txt and let it have the following data.

Data in file1.txt Data in file2.txt

HIOX TEST

hscripts.com

with friend ship

hiox india

HIOX TEST

HSCRIPTS.com

with friend ship

1. Compare files ignoring white space:

diff -w file1.txt file2.txt

This command will compare the file file1.txt with file2.txt ignoring white/blank space

and it will produce the following output.

2c2

< hscripts.com

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 26

> HSCRIPTS.com

4d3

< Hioxindia.com

2. Compare the files side by side, ignoring white space:

diff -by file1.txt file2.txt

This command will compare the files ignoring white/blank space, It is easier to

differentiate the files.

HIOX TEST HIOX TEST

hscripts.com | HSCRIPTS.com

with friend ship with friend ship

Hioxindia.com <

The third line(with friend ship) in file2.txt has more blank spaces, but still the -b ignores

the blank space and does not show changes in the particular line, -y printout the result

side by side.

3. Compare the files ignoring case.

diff -iy file1.txt file2.txt

This command will compare the files ignoring case(upper-case and lower-case) and

displays the following output.

HIOX TEST HIOX TEST

hscripts.com HSCRIPTS.com

with friend ship | with friend ship

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 27

chgrp COMMAND:

 chgrp command is used to change the group of the file or directory. This is an admin

command. Root user only can change the group of the file or directory.

SYNTAX:

 The Syntax is

 chgrp [options] newgroup filename/directoryname

OPTIONS:

-R
Change the permission on files that are in the subdirectories of the directory

that you are currently in.

-c Change the permission for each file.

-f Force. Do not report errors.

Hioxindia.com <

EXAMPLE:

1. chgrp hiox test.txt

The group of 'test.txt' file is root, Change to newgroup hiox.

2. chgrp -R hiox test

The group of 'test' directory is root. With -R, the files and its subdirectories also changes

to newgroup hiox.

3. chgrp -c hiox calc.txt

They above command is used to change the group for the specific file('calc.txt') only.

About wc

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 28

Short for word count, wc displays a count of lines, words, and characters in a file.

Syntax

wc [-c | -m | -C] [-l] [-w] [file ...]

-c Count bytes.

-m Count characters.

-C Same as -m.

-l Count lines.

-w Count words delimited by white space characters or new line characters.

Delimiting characters are Extended Unix Code (EUC) characters from any code

set defined by iswspace()

File Name of file to word count.

Examples

wc myfile.txt - Displays information about the file myfile.txt. Below is an example of the output.

5 13 57 myfile.txt

5 = Lines

13 = Words

57 = Characters

About split

Split a file into pieces.

Syntax

split [-linecount | -l linecount] [-a suffixlength] [file [name]]

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 29

split -b n [k | m] [-a suffixlength] [file [name]]

-linecount | -l

linecount

Number of lines in each piece. Defaults to 1000 lines.

-a

suffixlength

Use suffixlength letters to form the suffix portion of the filenames of the split

file. If -a is not specified, the default suffix length is 2. If the sum of the name

operand and the suffixlength option-argument would create a filename exceeding

NAME_MAX bytes, an error will result; split will exit with a diagnostic message

and no files will be created.

-b n Split a file into pieces n bytes in size.

-b n k Split a file into pieces n*1024 bytes in size.

-b n m Split a file into pieces n*1048576 bytes in size.

File The path name of the ordinary file to be split. If no input file is given or file is -,

the standard input will be used.

name The prefix to be used for each of the files resulting from the split operation. If no

name argument is given, x will be used as the prefix of the output files. The

combined length of the basename of prefix and suffixlength cannot exceed

NAME_MAX bytes; see OPTIONS.

Examples

split -b 22 newfile.txt new - would split the file "newfile.txt" into three separate files called

newaa, newab and newac each file the size of 22.

split -l 300 file.txt new - would split the file "newfile.txt" into files beginning with the name

"new" each containing 300 lines of text each

About settime and touch

Change file access and modification time.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 30

Syntax

touch [-a] [-c] [-m] [-r ref_file | -t time] file

settime [-f ref_file] file

-a Change the access time of file. Do not change the modification time unless -m is

also specified.

-c Do not create a specified file if it does not exist. Do not write any diagnostic

messages concerning this condition.

-m Change the modification time of file. Do not change the access time unless -a is

also specified.

-r ref_file Use the corresponding times of the file named by ref_file instead of the current

time.

-t time Use the specified time instead of the current time. time will be a decimal number

of the form:

[[CC]YY]MMDDhhmm [.SS]

MM - The month of the year [01-12].

DD - The day of the month [01-31].

hh - The hour of the day [00-23].

mm - The minute of the hour [00-59].

CC - The first two digits of the year.

YY - The second two digits of the year.

SS - The second of the minute [00-61].

-f ref_file Use the corresponding times of the file named by ref_file instead of the current

time.

File A path name of a file whose times are to be modified.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 31

Examples

settime myfile.txt

Sets the file myfile.txt as the current time / date.

touch newfile.txt

Creates a file known as "newfile.txt", if the file does not already exist. If the file already exists

the accessed / modification time is updated for the file newfile.txt

About comm

Select or reject lines common to two files.

Syntax

comm [-1] [-2] [-3] file1 file2

-1 Suppress the output column of lines unique to file1.

-2 Suppress the output column of lines unique to file2.

-3 Suppress the output column of lines duplicated in file1 and file2.

file1 Name of the first file to compare.

file2 Name of the second file to compare.

Examples

comm myfile1.txt myfile2.txt

The above example would compare the two files myfile1.txt and myfile2.txt.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 32

Process utilities:

ps COMMAND:

 ps command is used to report the process status. ps is the short name for Process Status.

SYNTAX:

 The Syntax is

 ps [options]

OPTIONS:

-a
List information about all processes most frequently requested: all those

except process group leaders and processes not associated with a terminal..

-A or e List information for all processes.

-d List information about all processes except session leaders.

-e List information about every process now running.

-f Generates a full listing.

-j Print session ID and process group ID.

-l Generate a long listing.

EXAMPLE:

1. ps

Output:

 PID TTY TIME CMD

 2540 pts/1 00:00:00 bash

 2621 pts/1 00:00:00 ps

In the above example, typing ps alone would list the current running processes.

2. ps -f

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 33

Output:

UID PID PPID C STIME TTY TIME CMD

nirmala 2540 2536 0 15:31 pts/1 00:00:00 bash

nirmala 2639 2540 0 15:51 pts/1 00:00:00 ps -f

Displays full information about currently running processes.

kill COMMAND:

 kill command is used to kill the background process.

SYNTAX:

 The Syntax is

 kill [-s] [-l] %pid

OPTIONS:

-s
Specify the signal to send. The signal may be given as a signal name or

number.

-l
Write all values of signal supported by the implementation, if no operand is

given.

-pid Process id or job id.

-9 Force to kill a process.

EXAMPLE:

Step by Step process:

 Open a process music player.

xmms

press ctrl+z to stop the process.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 34

 To know group id or job id of the background task.

jobs -l

 It will list the background jobs with its job id as,

 xmms 3956

kmail 3467

 To kill a job or process.

kill 3956

kill command kills or terminates the background process xmms.

About nice

Invokes a command with an altered scheduling priority.

Syntax

nice [-increment | -n increment] command [argument ...]

-increment | -

n increment

increment must be in the range 1-19; if not specified, an increment of 10 is

assumed. An increment greater than 19 is equivalent to 19.

The super-user may run commands with priority higher than normal by using a

negative increment such as -10. A negative increment assigned by an

unprivileged user is ignored.

command The name of a command that is to be invoked. If command names any of the

special built-in utilities, the results are undefined.

argument Any string to be supplied as an argument when invoking command.

Examples

nice +13 pico myfile.txt - runs the pico command on myfile.txt with an increment of +13.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 35

About at

Schedules a command to be ran at a particular time, such as a print job late at night.

Syntax

at executes commands at a specified time.

atq lists the user's pending jobs, unless the user is the superuser; in that case, everybody's jobs

are listed. The format of the output lines (one for each job) is: Job number, date, hour, job

class.

atrm deletes jobs, identified by their job number.

batch executes commands when system load levels permit; in other words, when the load

average drops below 1.5, or the value specified in the invocation of atrun.

at [-c | -k | -s] [-f filename] [-q queuename] [-m] -t time [date] [-l] [-r]

-c C shell. csh(1) is used to execute the at-job.

-k Korn shell. ksh(1) is used to execute the at-job.

-s Bourne shell. sh(1) is used to execute the at-job.

-f filename Specifies the file that contains the command to run.

-m Sends mail once the command has been run.

-t time Specifies at what time you want the command to be ran. Format hh:mm. am / pm

indication can also follow the time otherwise a 24-hour clock is used. A timezone

name of GMT, UCT or ZULU (case insensitive) can follow to specify that the

time is in Coordinated Universal Time. Other timezones can be specified using

the TZ environment variable. The below quick times can also be entered:

midnight - Indicates the time 12:00 am (00:00).

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 36

noon - Indicates the time 12:00 pm.

now - Indicates the current day and time. Invoking at - now will submit submit

an at-job for potentially immediate execution.

date Specifies the date you wish it to be ran on. Format month, date, year. The

following quick days can also be entered:

today - Indicates the current day.

tomorrow - Indicates the day following the current day.

-l Lists the commands that have been set to run.

-r Cancels the command that you have set in the past.

Examples

at -m 01:35 < atjob = Run the commands listed in the 'atjob' file at 1:35AM, in addition all

output that is generated from job mail to the user running the task. When this command has been

successfully enter you should receive a prompt similar to the below example.

commands will be executed using /bin/csh

job 1072250520.a at Wed Dec 24 00:22:00 2003

at -l = This command will list each of the scheduled jobs as seen below.

1072250520.a Wed Dec 24 00:22:00 2003

at -r 1072250520.a = Deletes the job just created.

 or

atrm 23 = Deletes job 23.

If you wish to create a job that is repeated you could modify the file that executes the commands

with another command that recreates the job or better yet use the crontab command.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

http://www.computerhope.com/unix/ucrontab.htm

Linux Programming

D.Koteswararao Page 37

Note: Performing just the at command at the prompt will give you an error "Garbled Time", this

is a standard error message if no switch or time setting is given.

Filters:

more COMMAND:

 more command is used to display text in the terminal screen. It allows only backward

movement.

SYNTAX:

 The Syntax is

 more [options] filename

OPTIONS:

-c Clear screen before displaying.

-e Exit immediately after writing the last line of the last file in the argument list.

-n Specify how many lines are printed in the screen for a given file.

+n Starts up the file from the given number.

EXAMPLE:

1. more -c index.php

Clears the screen before printing the file .

2. more -3 index.php

Prints first three lines of the given file. Press Enter to display the file line by line.

head COMMAND:

 head command is used to display the first ten lines of a file, and also specifies how many lines

to display.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 38

SYNTAX:

 The Syntax is

 head [options] filename

OPTIONS:

-n To specify how many lines you want to display.

-n number
The number option-argument must be a decimal integer whose sign affects

the location in the file, measured in lines.

-c number
The number option-argument must be a decimal integer whose sign affects

the location in the file, measured in bytes.

EXAMPLE:

1. head index.php

This command prints the first 10 lines of 'index.php'.

2. head -5 index.php

The head command displays the first 5 lines of 'index.php'.

3. head -c 5 index.php

The above command displays the first 5 characters of 'index.php'.

tail COMMAND:

 tail command is used to display the last or bottom part of the file. By default it displays last

10 lines of a file.

SYNTAX:

 The Syntax is

 tail [options] filename

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 39

OPTIONS:

-l To specify the units of lines.

-b To specify the units of blocks.

-n To specify how many lines you want to display.

-c number
The number option-argument must be a decimal integer whose sign affects the

location in the file, measured in bytes.

-n number
The number option-argument must be a decimal integer whose sign affects the

location in the file, measured in lines.

EXAMPLE:

1. tail index.php

It displays the last 10 lines of 'index.php'.

2. tail -2 index.php

It displays the last 2 lines of 'index.php'.

3. tail -n 5 index.php

It displays the last 5 lines of 'index.php'.

4. tail -c 5 index.php

It displays the last 5 characters of 'index.php'.

cut COMMAND:

 cut command is used to cut out selected fields of each line of a file. The cut command uses

delimiters to determine where to split fields.

SYNTAX:

 The Syntax is

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 40

 cut [options]

OPTIONS:

-c Specifies character positions.

-b Specifies byte positions.

-d flags Specifies the delimiters and fields.

EXAMPLE:

1. cut -c1-3 text.txt

Output:

Thi

Cut the first three letters from the above line.

2. cut -d, -f1,2 text.txt

Output:

This is, an example program

The above command is used to split the fields using delimiter and cut the first two fields.

paste COMMAND:

 paste command is used to paste the content from one file to another file. It is also used to set

column format for each line.

SYNTAX:

 The Syntax is

 paste [options]

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 41

OPTIONS:

-s Paste one file at a time instead of in parallel.

-d Reuse characters from LIST instead of TABs .

EXAMPLE:

1. paste test.txt>test1.txt

Paste the content from 'test.txt' file to 'test1.txt' file.

2. ls | paste - - - -

List all files and directories in four columns for each line.

sort COMMAND:

 sort command is used to sort the lines in a text file.

SYNTAX:

 The Syntax is

 sort [options] filename

OPTIONS:

-r Sorts in reverse order.

-u If line is duplicated display only once.

-o filename Sends sorted output to a file.

EXAMPLE:

1. sort test.txt

Sorts the 'test.txt'file and prints result in the screen.

2. sort -r test.txt

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 42

Sorts the 'test.txt' file in reverse order and prints result in the screen.

About uniq

Report or filter out repeated lines in a file.

Syntax

uniq [-c | -d | -u] [-f fields] [-s char] [-n] [+m] [input_file [output_file]]

-c Precede each output line with a count of the number of times the line occurred in

the input.

-d Suppress the writing of lines that are not repeated in the input.

-u Suppress the writing of lines that are repeated in the input.

-f fields Ignore the first fields fields on each input line when doing comparisons, where

fields is a positive decimal integer. A field is the maximal string matched by the

basic regular expression:

[[:blank:]]*[^[:blank:]]*

If fields specifies more fields than appear on an input line, a null string will be

used for comparison.

-s char Ignore the first chars characters when doing comparisons, where chars is a

positive decimal integer. If specified in conjunction with the -f option, the first

chars characters after the first fields fields will be ignored. If chars specifies more

characters than remain on an input line, a null string will be used for comparison.

-n Equivalent to -f fields with fields set to n.

+m Equivalent to -s chars with chars set to m.

input_file A path name of the input file. If input_file is not specified, or if the input_file is -

, the

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 43

standard input will be used.

output_file A path name of the output file. If output_file is not specified, the standard output

will be used. The results are unspecified if the file named by output_file is the

file named by input_file.

Examples

uniq myfile1.txt > myfile2.txt - Removes duplicate lines in the first file1.txt and outputs the

results to the second file.

About tr

Translate characters.

Syntax

tr [-c] [-d] [-s] [string1] [string2]

-c Complement the set of characters specified by string1.

-d Delete all occurrences of input characters that are specified by string1.

-s Replace instances of repeated characters with a single character.

string1 First string or character to be changed.

string2 Second string or character to change the string1.

Examples

echo "12345678 9247" | tr 123456789 computerh - this example takes an echo response of

'12345678 9247' and pipes it through the tr replacing the appropriate numbers with the letters. In

this example it would return computer hope.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 44

tr -cd '\11\12\40-\176' < myfile1 > myfile2 - this example would take the file myfile1 and strip

all non printable characters and take that results to myfile2.

General Commands:

date COMMAND:

 date command prints the date and time.

SYNTAX:

 The Syntax is

 date [options] [+format] [date]

OPTIONS:

-a

Slowly adjust the time by sss.fff seconds (fff represents fractions of a second).

This adjustment can be positive or negative.Only system admin/ super user

can adjust the time.

-

s date-

string

Sets the time and date to the value specfied in the datestring. The datestr may

contain the month names, timezones, 'am', 'pm', etc.

-u Display (or set) the date in Greenwich Mean Time (GMT-universal time).

Format:

%a Abbreviated weekday(Tue).

%A Full weekday(Tuesday).

%b Abbreviated month name(Jan).

%B Full month name(January).

%c Country-specific date and time format..

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 45

%D Date in the format %m/%d/%y.

%j Julian day of year (001-366).

%n Insert a new line.

%p String to indicate a.m. or p.m.

%T Time in the format %H:%M:%S.

%t Tab space.

%V Week number in year (01-52); start week on Monday.

EXAMPLE:

1. date command

date

The above command will print Wed Jul 23 10:52:34 IST 2008

2. To use tab space:

date +"Date is %D %t Time is %T"

The above command will remove space and print as

Date is 07/23/08 Time is 10:52:34

3. To know the week number of the year,

date -V

The above command will print 30

4. To set the date,

date -s "10/08/2008 11:37:23"

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 46

The above command will print Wed Oct 08 11:37:23 IST 2008

who COMMAND:

 who command can list the names of users currently logged in, their terminal, the time they

have been logged in, and the name of the host from which they have logged in.

SYNTAX:

 The Syntax is

 who [options] [file]

OPTIONS:

am i
Print the username of the invoking user, The 'am' and 'i' must be space

separated.

-b Prints time of last system boot.

-d print dead processes.

-H Print column headings above the output.

-i
Include idle time as HOURS:MINUTES. An idle time of . indicates activity

within the last minute.

-m Same as who am i.

-q Prints only the usernames and the user count/total no of users logged in.

-T,-w Include user's message status in the output.

EXAMPLE:

1. who -uH

Output:

NAME LINE TIME IDLE PID COMMENT

hiox ttyp3 Jul 10 11:08 . 4578

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 47

This sample output was produced at 11 a.m. The "." indiacates activity within the last

minute.

2. who am i

who am i command prints the user name.

echo COMMAND:

 echo command prints the given input string to standard output.

SYNTAX:

 The Syntax is

 echo [options..] [string]

OPTIONS:

-n do not output the trailing newline

-e enable interpretation of the backslash-escaped characters listed below

-E disable interpretation of those sequences in STRINGs

 Without -E, the following sequences are recognized and interpolated:

\NNN
the character whose ASCII code is NNN

(octal)

\a alert (BEL)

\\ backslash

\b backspace

\c suppress trailing newline

\f form feed

\n new line

\r carriage return

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 48

\t horizontal tab

\v vertical tab

EXAMPLE:

1. echo command

echo "hscripts Hiox India"

The above command will print as hscripts Hiox India

2. To use backspace:

echo -e "hscripts \bHiox \bIndia"

The above command will remove space and print as hscriptsHioxIndia

3. To use tab space in echo command

 echo -e "hscripts\tHiox\tIndia"

The above command will print as hscripts Hiox India

passwd COMMAND:

 passwd command is used to change your password.

SYNTAX:

 The Syntax is

 passwd [options]

OPTIONS:

-a Show password attributes for all entries.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 49

-l Locks password entry for name.

-d
Deletes password for name. The login name will not be prompted for

password.

-f
Force the user to change password at the next login by expiring the password

for name.

EXAMPLE:

1. passwd

Entering just passwd would allow you to change the password. After entering passwd you

will receive the following three prompts:

 Current Password:

 New Password:

 Confirm New Password:

Each of these prompts must be entered correctly for the password to be successfully

changed.

pwd COMMAND:

 pwd - Print Working Directory. pwd command prints the full filename of the current working

directory.

SYNTAX:

 The Syntax is

 pwd [options]

OPTIONS:

-P The pathname printed will not contain symbolic links.

-L The pathname printed may contain symbolic links.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 50

EXAMPLE:

1. Displays the current working directory.

pwd

If you are working in home directory then, pwd command displays the current working

directory as /home.

cal COMMAND:

 cal command is used to display the calendar.

SYNTAX:

 The Syntax is

 cal [options] [month] [year]

OPTIONS:

-1 Displays single month as output.

-3 Displays prev/current/next month output.

-s Displays sunday as the first day of the week.

-m Displays Monday as the first day of the week.

-j Displays Julian dates (days one-based, numbered from January 1).

-y Displays a calendar for the current year.

EXAMPLE:

1. cal

Output:

 September 2008

Su Mo Tu We Th Fr Sa

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 51

 1 2 3 4 5 6

 7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30

cal command displays the current month calendar.

2. cal -3 5 2008

Output:

 April 2008 May 2008 June 2008

Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa

 1 2 3 4 5 1 2 3 1 2 3 4 5 6 7

 6 7 8 9 10 11 12 4 5 6 7 8 9 10 8 9 10 11 12 13 14

13 14 15 16 17 18 19 11 12 13 14 15 16 17 15 16 17 18 19 20 21

20 21 22 23 24 25 26 18 19 20 21 22 23 24 22 23 24 25 26 27 28

27 28 29 30 25 26 27 28 29 30 31 29 30

Here the cal command displays the calendar of April, May and June month of year 2008.

 login Command

Signs into a new system.

Syntax

login [-p] [-d device] [-h hostname | terminal | -r hostname] [name [environ]]

-p Used to pass environment variables to the login shell.

-d device login accepts a device option, device. device is taken to be the path name of the

TTY port login is to operate on. The use of the device option can be expected to

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 52

improve login performance, since login will not need to call ttyname. The -d

option is available only to users whose UID and effective UID are root. Any

other attempt to use -d will cause login to quietly exit.

-h hostname |

terminal

Used by in.telnetd to pass information about the remote host and terminal type.

-r hostname Used by in.rlogind to pass information about

the remote host.

Examples

login computerhope.com - Would attempt to login to the computerhope domain.

uname command

Print name of current system.

Syntax

uname [-a] [-i] [-m] [-n] [-p] [-r] [-s] [-v] [-X] [-S systemname]

-a Print basic information currently available from the system.

-i Print the name of the hardware implementation (platform).

-m Print the machine hardware name (class). Use of this option is discouraged; use

uname -p instead.

-n Print the nodename (the nodename is the name by which the system is known to

a communications network).

-p Print the current host's ISA or processor type.

-r Print the operating system release level.

-s Print the name of the operating system. This is the default.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 53

-v Print the operating system version.

-X Print expanded system information, one information

element per line, as expected by SCO Unix. The

displayed information includes:

 system name, node, release, version, machine, and number of CPUs.

 BusType, Serial, and Users (set to "unknown" in Solaris)

 OEM# and Origin# (set to 0 and 1, respectively)

-S

systemname

The nodename may be changed by specifying a system name argument. The

system name argument is restricted to SYS_NMLN characters. SYS_NMLN is

an implementation specific value defined in <sys/utsname.h>. Only the super-

user is allowed

this capability.

Examples

uname -arv

List the basic system information, OS release, and OS version as shown below.

SunOS hope 5.7 Generic_106541-08 sun4m sparc SUNW,SPARCstation-10

uname -p

Display the Linux platform.

SED:

What is sed?

 A non-interactive stream editor

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 54

 Interprets sed instructions and performs actions

 Use sed to:

 Automatically perform edits on file(s)

 Simplify doing the same edits on multiple files

 Write conversion programs

sed command syntax

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 55

sed Operation

How Does sed Work?

 sed reads line of input

 line of input is copied into a temporary buffer called pattern space

 editing commands are applied

 subsequent commands are applied to line in the pattern space, not the

original input line

 once finished, line is sent to output

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 56

 (unless –n option was used)

 line is removed from pattern space

 sed reads next line of input, until end of file

Note: input file is unchanged

sed instruction format

 address determines which lines in the input file are to be processed by the command(s)

 if no address is specified, then the command is applied to each input line

 address types:

 Single-Line address

 Set-of-Lines address

 Range address

 Nested address

Single-Line Address

 Specifies only one line in the input file

 special: dollar sign ($) denotes last line of input file

Examples:

 show only line 3

 sed -n -e '3 p' input-file

 show only last line

 sed -n -e '$ p' input-file

 substitute ―endif‖ with ―fi‖ on line 10

 sed -e '10 s/endif/fi/' input-file

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 57

Set-of-Lines Address

 use regular expression to match lines

 written between two slashes

 process only lines that match

 may match several lines

 lines may or may not be consecutives

Examples:

sed -e ‘/key/ s/more/other/’ input-file

sed -n -e ‘/r..t/ p’ input-file

Range Address

 Defines a set of consecutive lines

Format:

 start-addr,end-addr (inclusive)

Examples:

10,50 line-number,line-number

10,/R.E/ line-number,/RegExp/

/R.E./,10 /RegExp/,line-number

/R.E./,/R.E/ /RegExp/,/RegExp/

Example: Range Address

% sed -n -e ‘/^BEGIN$/,/^END$/p’ input-file

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 58

 Print lines between BEGIN and END, inclusive

BEGIN

Line 1 of input

Line 2 of input

Line3 of input

END

Line 4 of input

Line 5 of input

Nested Address

 Nested address contained within another address

Example:

 print blank lines between line 20 and 30

20,30{

/^$/ p

}

Address with !

 address with an exclamation point (!):

 instruction will be applied to all lines that do not match the address

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 59

Example:

 print lines that do not contain ―obsolete‖

 sed -e ‘/obsolete/!p’ input-file

sed commands

Line Number

 line number command (=) writes the current line number before each matched/output line

Examples:

sed -e '/Two-thirds-time/=' tuition.data

sed -e '/^[0-9][0-9]/=' inventory

modify commands

Insert Command: i

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 60

 adds one or more lines directly to the output before the address:

 inserted ―text‖ never appears in sed‘s pattern space

 cannot be used with a range address; can only be used with the single-line and set-

of-lines address types

Syntax:

[address] i\

text

Append Command: a

 adds one or more lines directly to the output after the address:

 Similar to the insert command (i), append cannot be used with a range address.

 Appended ―text‖ does not appear in sed‘s pattern space.

Syntax:

[address] a\

text

Change Command: c

 replaces an entire matched line with new text

 accepts four address types:

 single-line, set-of-line, range, and nested addresses.

Syntax:

[address1[,address2]] c\

text

Delete Command: d

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 61

 deletes the entire pattern space

 commands following the delete command are ignored since the deleted text is no

longer in the pattern space

Syntax:

[address1[,address2]] d

Substitute Command (s)

Syntax:

 [addr1][,addr2] s/search/replace/[flags]

 replaces text selected by search string with replacement string

 search string can be regular expression

 flags:

 global (g), i.e. replace all occurrences

 specific substitution count (integer), default 1

Regular Expressions: use with sed

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 62

Substitution Back References

Example: Replacement String &

$ cat datafile

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 63

Charles Main 3.0 .98 3 34

Sharon Gray 5.3 .97 5 23

Patricia Hemenway 4.0 .7 4 17

TB Savage 4.4 .84 5 20

AM Main Jr. 5.1 .94 3 13

Margot Weber 4.5 .89 5 9

Ann Stephens 5.7 .94 5 13

$ sed -e ‘s/[0-9][0-9]$/&.5/’ datafile

Charles Main 3.0 .98 3 34.5

Sharon Gray 5.3 .97 5 23.5

Patricia Hemenway 4.0 .7 4 17.5

TB Savage 4.4 .84 5 20.5

AM Main Jr. 5.1 .94 3 13.5

Margot Weber 4.5 .89 5 9

Ann Stephens 5.7 .94 5 13.5

Transform Command (y)

Syntax:

 [addr1][,addr2]y/a/b/

 translates one character 'a' to another 'b'

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 64

 cannot use regular expression metacharacters

 cannot indicate a range of characters

 similar to ―tr‖ command

Example:

$ sed -e ‘1,10y/abcd/wxyz/’ datafile

sed i/o commands

Input (next) Command: n and N

 Forces sed to read the next input line

 Copies the contents of the pattern space to output

 Deletes the current line in the pattern space

 Refills it with the next input line

 Continue processing

 N (uppercase) Command

 adds the next input line to the current contents of the pattern space

 useful when applying patterns to two or more lines at the same time

Output Command: p and P

 Print Command (p)

 copies the entire contents of the pattern space to output

 will print same line twice unless the option ―–n‖ is used

 Print command: P

 prints only the first line of the pattern space

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 65

 prints the contents of the pattern space up to and including a new line character

 any text following the first new line is not printed

List Command (l)

 The list command: l

 shows special characters (e.g. tab, etc)

 The octal dump command (od -c) can be used to produce similar result

Hold Space

 temporary storage area

 used to save the contents of the pattern space

 4 commands that can be used to move text back and forth between the pattern space and

the hold space:

 h, H

 g, G

File commands

 allows to read and write from/to file while processing standard input

 read: r command

 write: w command

Read File command

Syntax: r filename

 queue the contents of filename to be read and inserted into the output stream at

the end of the current cycle, or when the next input line is read

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 66

 if filename cannot be read, it is treated as if it were an empty file, without

any error indication

 single address only

Write File command

Syntax: w filename

 Write the pattern space to filename

 The filename will be created (or truncated) before the first input line is read

 all w commands which refer to the same filename are output through the same

FILE stream

Branch Command (b)

 Change the regular flow of the commands in the script file

Syntax: [addr1][,addr2]b[label]

 Branch (unconditionally) to ‗label‘ or end of script

 If ―label‖ is supplied, execution resumes at the line following :label; otherwise,

control passes to the end of the script

 Branch label

:mylabel

Example: The quit (q) Command

Syntax: [addr]q

 Quit (exit sed) when addr is encountered.

Example: Display the first 50 lines and quit

% sed -e ’50q’ datafile

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 67

Same as:

% sed -n -e ‘1,50p’ datafile

% head -50 datafile

AWK

What is awk?

 created by: Aho, Weinberger, and Kernighan

 scripting language used for manipulating data and generating reports

 versions of awk

 awk, nawk, mawk, pgawk, …

 GNU awk: gawk

What can you do with awk?

 awk operation:

 scans a file line by line

 splits each input line into fields

 compares input line/fields to pattern

 performs action(s) on matched lines

 Useful for:

 transform data files

 produce formatted reports

 Programming constructs:

 format output lines

 arithmetic and string operations

 conditionals and loops

The Command: awk

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 68

Basic awk Syntax

 awk [options] ‘script’ file(s)

 awk [options] –f scriptfile file(s)

Options:

 -F to change input field separator

 -f to name script file

Basic awk Program

 consists of patterns & actions:

 pattern {action}

 if pattern is missing, action is applied to all lines

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 69

 if action is missing, the matched line is printed

 must have either pattern or action

Example:

awk '/for/' testfile

 prints all lines containing string ―for‖ in testfile

Basic Terminology: input file

 A field is a unit of data in a line

 Each field is separated from the other fields by the field separator

 default field separator is whitespace

 A record is the collection of fields in a line

 A data file is made up of records

Example Input File

Buffers

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 70

 awk supports two types of buffers:

 record and field

 field buffer:

 one for each fields in the current record.

 names: $1, $2, …

 record buffer :

 $0 holds the entire record

Some System Variables

FS Field separator (default=whitespace)

RS Record separator (default=\n)

NF Number of fields in current record

NR Number of the current record

OFS Output field separator (default=space)

ORS Output record separator (default=\n)

FILENAME Current filename

Example: Records and Fields

% cat emps

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 71

Tom Jones 4424 5/12/66 543354

Mary Adams 5346 11/4/63 28765

Sally Chang 1654 7/22/54 650000

Billy Black 1683 9/23/44 336500

% awk '{print NR, $0}' emps

1 Tom Jones 4424 5/12/66 543354

2 Mary Adams 5346 11/4/63 28765

3 Sally Chang 1654 7/22/54 650000

4 Billy Black 1683 9/23/44 336500

Example: Space as Field Separator

% cat emps

Tom Jones 4424 5/12/66 543354

Mary Adams 5346 11/4/63 28765

Sally Chang 1654 7/22/54 650000

Billy Black 1683 9/23/44 336500

% awk '{print NR, $1, $2, $5}' emps

1 Tom Jones 543354

2 Mary Adams 28765

3 Sally Chang 650000

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 72

4 Billy Black 336500

Example: Colon as Field Separator

% cat em2

Tom Jones:4424:5/12/66:543354

Mary Adams:5346:11/4/63:28765

Sally Chang:1654:7/22/54:650000

Billy Black:1683:9/23/44:336500

% awk -F: '/Jones/{print $1, $2}' em2

Tom Jones 4424

awk Scripts

 awk scripts are divided into three major parts:

 comment lines start with #

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 73

awk Scripts

 BEGIN: pre-processing

 performs processing that must be completed before the file processing starts (i.e.,

before awk starts reading records from the input file)

 useful for initialization tasks such as to initialize variables and to create report

headings

 BODY: Processing

 contains main processing logic to be applied to input records

 like a loop that processes input data one record at a time:

 if a file contains 100 records, the body will be executed 100 times, one for

each record

 END: post-processing

 contains logic to be executed after all input data have been processed

 logic such as printing report grand total should be performed in this part of the

script

Pattern / Action Syntax

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 74

Categories of Patterns

Expression Pattern types

 match

 entire input record

 regular expression enclosed by ‗/‘s

 explicit pattern-matching expressions

 ~ (match), !~ (not match)

 expression operators

 arithmetic

 relational

 logical

Example: match input record

% cat employees2

Tom Jones:4424:5/12/66:543354

Mary Adams:5346:11/4/63:28765

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 75

Sally Chang:1654:7/22/54:650000

Billy Black:1683:9/23/44:336500

% awk –F: '/00$/' employees2

Sally Chang:1654:7/22/54:650000

Billy Black:1683:9/23/44:336500

Example: explicit match

% cat datafile

northwest NW Charles Main 3.0 .98 3 34

western WE Sharon Gray 5.3 .97 5 23

southwest SW Lewis Dalsass 2.7 .8 2 18

southern SO Suan Chin 5.1 .95 4 15

southeast SE Patricia Hemenway 4.0 .7 4 17

eastern EA TB Savage 4.4 .84 5 20

northeast NE AM Main 5.1 .94 3 13

north NO Margot Weber 4.5 .89 5 9

central CT Ann Stephens 5.7 .94 5 13

% awk '$5 ~ /\.[7-9]+/' datafile

southwest SW Lewis Dalsass 2.7 .8 2 18

central CT Ann Stephens 5.7 .94 5 13

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 76

Examples: matching with REs

% awk '$2 !~ /E/{print $1, $2}' datafile

northwest NW

southwest SW

southern SO

north NO

central CT

% awk '/^[ns]/{print $1}' datafile

northwest

southwest

southern

southeast

northeast

north

Arithmetic Operators

Operator Meaning Example

 + Add x + y

 - Subtract x – y

 * Multiply x * y

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 77

 / Divide x / y

 % Modulus x % y

 ^ Exponential x ^ y

Example:

% awk '$3 * $4 > 500 {print $0}' file

Relational Operators

Operator Meaning Example

 < Less than x < y

 < = Less than or equal x < = y

 == Equal to x == y

 != Not equal to x != y

 > Greater than x > y

 > = Greater than or equal to x > = y

 ~ Matched by reg exp x ~ /y/

 !~ Not matched by req exp x !~ /y/

Logical Operators

Operator Meaning Example

 && Logical AND a && b

 || Logical OR a || b

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 78

 ! NOT ! a

Examples:

% awk '($2 > 5) && ($2 <= 15) {print $0}' file

% awk '$3 == 100 || $4 > 50' file

Range Patterns

 Matches ranges of consecutive input lines

Syntax:

 pattern1 , pattern2 {action}

 pattern can be any simple pattern

 pattern1 turns action on

 pattern2 turns action off

Range Pattern Example

awk Actions

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 79

awk expressions

 Expression is evaluated and returns value

 consists of any combination of numeric and string constants, variables, operators,

functions, and regular expressions

 Can involve variables

 As part of expression evaluation

 As target of assignment

awk variables

 A user can define any number of variables within an awk script

 The variables can be numbers, strings, or arrays

 Variable names start with a letter, followed by letters, digits, and underscore

 Variables come into existence the first time they are referenced; therefore, they do not

need to be declared before use

 All variables are initially created as strings and initialized to a null string ―‖

awk Variables

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 80

Format:

 variable = expression

Examples:

% awk '$1 ~ /Tom/

 {wage = $3 * $4; print wage}' filename

% awk '$4 == "CA" {$4 = "California"; print $0}' filename

awk assignment operators

= assign result of right-hand-side expression to

 left-hand-side variable

++ Add 1 to variable

-- Subtract 1 from variable

+= Assign result of addition

-= Assign result of subtraction

*= Assign result of multiplication

/= Assign result of division

%= Assign result of modulo

^= Assign result of exponentiation

Awk example

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 81

 File: grades

 john 85 92 78 94 88

 andrea 89 90 75 90 86

 jasper 84 88 80 92 84

 awk script: average

 # average five grades

 { total = $2 + $3 + $4 + $5 + $6

 avg = total / 5

 print $1, avg }

 Run as:

 awk –f average grades

Output Statements

print

 print easy and simple output

printf

 print formatted (similar to C printf)

sprintf

 format string (similar to C sprintf)

Function: print

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 82

 Writes to standard output

 Output is terminated by ORS

 default ORS is newline

 If called with no parameter, it will print $0

 Printed parameters are separated by OFS,

 default OFS is blank

 Print control characters are allowed:

 \n \f \a \t \\ …

print example

% awk '{print}' grades

john 85 92 78 94 88

andrea 89 90 75 90 86

% awk '{print $0}' grades

john 85 92 78 94 88

andrea 89 90 75 90 86

% awk '{print($0)}' grades

john 85 92 78 94 88

andrea 89 90 75 90 86

Redirecting print output

 Print output goes to standard output

unless redirected via:

> ―file‖

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 83

>> ―file‖

| ―command‖

 will open file or command only once

 subsequent redirections append to already open stream

print Example

% awk '{print $1 , $2 > "file"}' grades

% cat file

john 85

andrea 89

jasper 84

% awk '{print $1,$2 | "sort"}' grades

andrea 89

jasper 84

john 85

% awk '{print $1,$2 | "sort –k 2"}' grades

jasper 84

john 85

andrea 89

% date

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 84

Wed Nov 19 14:40:07 CST 2008

% date |

 awk '{print "Month: " $2 "\nYear: ", $6}'

Month: Nov

Year: 2008

printf: Formatting output

Syntax:

printf(format-string, var1, var2, …)

 works like C printf

 each format specifier in ―format-string‖ requires argument of matching type

Format specifiers

%d, %i decimal integer

%c single character

%s string of characters

%f floating point number

%o octal number

%x hexadecimal number

%e scientific floating point notation

%% the letter ―%‖

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 85

Format specifier examples

Given: x = ‗A‘, y = 15, z = 2.3, and $1 = Bob Smith

Printf Format Specifier What it Does

%c printf("The character is %c \n", x)

output: The character is A

%d printf("The boy is %d years old \n", y)

output: The boy is 15 years old

%s printf("My name is %s \n", $1)

output: My name is Bob Smith

%f printf("z is %5.3f \n", z)

output: z is 2.300

Format specifier modifiers

 between ―%‖ and letter

 %10s

 %7d

 %10.4f

 %-20s

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 86

 meaning:

 width of field, field is printed right justified

 precision: number of digits after decimal point

 ―-‖ will left justify

sprintf: Formatting text

Syntax:

sprintf(format-string, var1, var2, …)

 Works like printf, but does not produce output

 Instead it returns formatted string

Example:

{

 text = sprintf("1: %d – 2: %d", $1, $2)

 print text

}

awk builtin functions

tolower(string)

 returns a copy of string, with each upper-case character converted to lower-case.

Nonalphabetic characters are left unchanged.

 Example: tolower("MiXeD cAsE 123")

 returns "mixed case 123"

toupper(string)

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 87

 returns a copy of string, with each lower-case character converted to upper-case.

awk Example: list of products

103:sway bar:49.99

101:propeller:104.99

104:fishing line:0.99

113:premium fish bait:1.00

106:cup holder:2.49

107:cooler:14.89

112:boat cover:120.00

109:transom:199.00

110:pulley:9.88

105:mirror:4.99

108:wheel:49.99

111:lock:31.00

102:trailer hitch:97.95

awk Example: output

Marine Parts R Us

Main catalog

Part-id name price

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 88

======================================

101 propeller 104.99

102 trailer hitch 97.95

103 sway bar 49.99

104 fishing line 0.99

105 mirror 4.99

106 cup holder 2.49

107 cooler 14.89

108 wheel 49.99

109 transom 199.00

110 pulley 9.88

111 lock 31.00

112 boat cover 120.00

113 premium fish bait 1.00

======================================

Catalog has 13 parts

awk Example: complete

BEGIN {

 FS= ":"

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 89

 print "Marine Parts R Us"

 print "Main catalog"

 print "Part-id\tname\t\t\t price"

 print "======================================"

}

{

 printf("%3d\t%-20s\t%6.2f\n", $1, $2, $3)

 count++

}

END {

 print "======================================"

 print "Catalog has " count " parts"

}

awk Array

 awk allows one-dimensional arrays

 to store strings or numbers

 index can be number or string

 array need not be declared

 its size

 its elements

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 90

 array elements are created when first used

 initialized to 0 or ―‖

Arrays in awk

Syntax:

 arrayName[index] = value

Examples:

 list[1] = "one"

 list[2] = "three"

 list["other"] = "oh my !"

Illustration: Associative Arrays

 awk arrays can use string as index

Awk builtin split function

split(string, array, fieldsep)

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 91

 divides string into pieces separated by fieldsep, and stores the pieces in array

 if the fieldsep is omitted, the value of FS is used.

Example:

 split("auto-da-fe", a, "-")

 sets the contents of the array a as follows:

 a[1] = "auto"

 a[2] = "da"

 a[3] = "fe"

Example: process sales data

 input file:

 output:

 summary of category sales

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 92

Illustration: process each input line

Illustration: process each input line

Summary: awk program

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 93

Example: complete program

% cat sales.awk

{

 deptSales[$2] += $3

}

END {

 for (x in deptSales)

 print x, deptSales[x]

}

% awk –f sales.awk sales

Awk control structures

 Conditional

 if-else

 Repetition

 for

 with counter

 with array index

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 94

 while

 do-while

 also: break, continue

if Statement

Syntax:

if (conditional expression)

 statement-1

else

 statement-2

Example:

if (NR < 3)

 print $2

else

 print $3

for Loop

Syntax:

for (initialization; limit-test; update)

 statement

Example:

for (i = 1; i <= NR; i++)

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 95

{

 total += $i

 count++

}

for Loop for arrays

Syntax:

for (var in array)

 statement

Example:

for (x in deptSales)

{

 print x, deptSales[x]

}

while Loop

Syntax:

while (logical expression)

 statement

Example:

i = 1

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 96

while (i <= NF)

{

 print i, $i

 i++

}

do-while Loop

Syntax:

 do

 statement

 while (condition)

 statement is executed at least once, even if condition is false at the beginning

Example:

 i = 1

 do {

 print $0

 i++

 } while (i <= 10)

loop control statements

 break

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 97

 exits loop

 continue

 skips rest of current iteration, continues with next iteration

"Unit-II - Shell Programming"

Shell Programming

The shell has similarities to the DOS command processor Command.com (actually

Dos was design as a poor copy of UNIX shell), it's actually much more powerful,

really a programming language in its own right.

A shell is always available on even the most basic UNIX installation. You have to go

through the shell to get other programs to run. You can write programs using the shell.

You use the shell to administrate your UNIX system. For example:

ls -al | more

is a short shell program to get a long listing of the present directory and route the

output through the more command.

What is a Shell?

A shell is a program that acts as the interface between you and the UNIX system,

allowing you to enter commands for the operating system to execute.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 98

Here are some common shells.

Pipes and Redirection

Pipes connect processes together. The input and output of UNIX programs can be

redirected.

Redirecting Output

The > operator is used to redirect output of a program. For example:

ls -l > lsoutput.txt

redirects the output of the list command from the screen to the file lsoutput.txt.

To append to a file, use the >> operator.

ps >> lsoutput.txt

Redirecting Input

You redirect input by using the < operator. For example:

more < killout.txt

Pipes

We can connect processes together using the pipe operator (|). For example, the

following program means run the ps program, sort its output, and save it in the file

pssort.out

ps | sort > pssort.out

The sort command will sort the list of words in a textfile into alphbetical order

according to the ASCII code set character order.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 99

The Shell as a Programming Language

You can type in a sequence of commands and allow the shell to execute them

interactively, or youu can sotre these commands in a file which you can invoke as a

program.

Interactive Programs

A quick way of trying out small code fragments is to just type in the shell script on the

command line. Here is a shell program to compile only files that contain the string

POSIX.

Creating a Script

To create a shell script first use a text editor to create a file containing the commands.

For example, type the following commands and save them as first.sh

Note: commands start with a #.

The line

#!/bin/sh

is special and tells the system to use the /bin/sh program to execute this program.

The command

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 100

exit 0

Causes the script program to exit and return a value of 0, which means there were not

errors.

Making a Script Executable

There are two ways to execute the script. 1) invoke the shell with the name of the

script file as a parameter, thus:

/bin/sh first.sh

Or 2) change the mode of the script to executable and then after execute it by just

typing its name.

chmod +x first.sh

first.sh

Actually, you may need to type:

./first.sh

to make the file execute unles the path variable has your directory in it.

Shell Syntax

The modern UNIX shell can be used to write quite large, structured programs.

Variables

Variables are generally created when you first use them. By default, all variables are

considered and stored as strings. Variable names are case sensitive.

Quoting

Normally, parameters are separated by white space, such as a space. Single quot

marks can be used to enclose values containing space(s). Type the following into a

file called quot.sh

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 101

make sure to make it executable by typing the command:

< chmod a+x quot.sh

The results of executing the file is:

How It Works

The variable myvar is created and assigned the string Hi there. The content of the

variable is displyed using the echo $. Double quotes don't effect echoing the value.

Single quotes and backslash do.

Environment Variables

When a shell starts, some variables are initialized from values in the environment.

Here is a sample of some of them.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 102

Parameter Variables

If your script is invoked with parameters, some additional variables are created.

The following shows the difference between using the variable $* and $@

notice that the first line of the above has a space between the firsr ' and the second '.

Now try your hand at typing a shell script

Carefully type the following into a file called: try_variables

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 103

make sure to make it executable by typing the command:

< chmod a+x try_variables

Execute the file with parameters by typing:

try_variables foo bar baz

The results of executing the file is:

How It Works

It creates the variable salutation, displays its value, and some parameter variables.

Conditions

All programming languages have the ability to test conditions and perform different

actions based on those conditions. A shell script can test the exit code of any

command.

The test, or []Command

Here is how to check for the existance of the file fred.c using the test and using the []

command.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 104

You can even place the then on the same line as the if, if youu add a semicolon before

the word then.

Here are the conditon types that can be used with the test command. There are string

comparison.

There are arithmetic comparison.

There are file conditions.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 105

Control Structures

The shell has a set of control structures.

if

The if statement is vary similar other programming languages except it ends with a fi.

if condition

then

statements

else

statements

fi

elif

the elif is better known as "else if". It replaces the else part of an if statement with

another if statement. You can try it out by using the following script.

#!/bin/sh

echo "Is it morning? Please answer yes or no"

read timeofday

if [$timeofday = "yes"]

then

echo "Good morning"

elif [$timeofday = "no"]; then

echo "Good afternoon"

else

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 106

echo "Sorry, $timeofday not recognized. Enter yes or no"

exit 1

fi

exit 0

How It Works

The above does a second test on the variable timeofday if it isn't equal to yes.

A Problem with Variables

If a variable is set to null, the statement

if [$timeofday = "yes"]

looks like

if [= "yes"]

which is illegal. This problem can be fixed by using double quotes around the variable

name.

if ["$timeofday" = "yes"]

.

for

The for construct is used for looping through a range of values, which can be any set

of strings. The syntax is:

for variable in values

do

statements

done

Try out the following script:

#!/bin/sh

for foo in bar fud 43

do

echo $foo

done

exit 0

When executed, the output should be:

bar

fud

43

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 107

How It Works

The above example creates the variable foo and assigns it a different value each time

around the for loop.

How It Works

Here is another script which uses the $(command) syntax to expand a list to chap3.txt,

chap4.txt, and chap5.txt and print the files.

#!/bin/sh

for file in $(ls chap[345].txt); do

lpr $file

done

while

While loops will loop as long as some condition exist. OF course something in the

body statements of the loop should eventually change the condition and cause the loop

to exit. Here is the while loop syntax.

while condition do

statements

done

Here is a whil loop that loops 20 times.

#!/bin/sh

foo=1

while ["$foo" -le 20]

do

echo "Here we go again"

foo=$(($foo+1))

done

exit 0

How It Works

The above script uses the [] command to test foo for <= the value 20. The line

foo=$(($foo+1))

increments the value of foo each time the loop executes..

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 108

until

The until statement loops until a condition becomes true! Its syntax is:

until condition

do

statements

done

Here is a script using until.

#!/bin/sh

until who | grep "$1" > /dev/null

do

sleep 60

done

now ring the bell and announce the expected user.

echo -e \\a

echo "**** $1 has just loogged in ****"

exit 0

case

The case statement allows the testing of a variable for more then one value. The case

statement ends with the word esac. Its syntax is:

case variable in

pattern [| pattern] ...) statements;;

pattern [| pattern] ...) statements;;

...

esac

Here is a sample script using a case statement:

#!/bin/sh

echo "Is it morning? Please answer yes or no"

read timeofday

case "$timeofday" in

"yes") echo "Good Morning";;

"no") echo "Good Afternoon";;

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 109

"y") echo "Good Morning";;

"n") echo "Good Afternoon";;

*) echo "Soory, answer not recognized";;

esac

exit 0

How It Works

The value in the varaible timeofday is compared to various strings. When a match is

made, the associated echo command is executed.

Here is a case where multiple strings are tested at a time, to do the some action.

case "$timeofday" in

"yes" | "y" | "yes" | "YES") echo "good Morning";;

"n"* | "N"*) <echo "Good Afternoon";;

*) < echo "Sorry, answer not recognized";;

esac

How It Works

The above has sever strings tested for each possible statement.

Here is a case statement that executes multiple statements for each case.

case "$timeofday" in

"yes" | "y" | "Yes" | "YES")

echo "Good Morning"

echo "Up bright and early this morning"

;;

[nN]*)

echo "Good Afternoon"

;;

*)

echo "Sorry, answer not recognized"

echo "Please answer yes or noo"

exit 1

;;

esac

How It Works

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 110

When a match is found to the variable value of timeofday, all the statements up to the

;; are executed.

Lists

To test for multiple conditions, we can use nested if or if/elif.

The AND List

Alolows us to execute a series of command. Each command is only execute if the

previous commands have succeeded. An AND list joins conditions by using &&.

statement1 && statement2 && statement3 && ...

Her is a sample AND list:

#!/bin/sh

touch fine_one

rm -f file_two

if [-f file_one] && echo "hello" && [-f file_two] && echo " there"

then

echo "in if"

else

echo "in else"

fi

exit 0

How It Works

The touch command creates an empty file. the rm come remove a file. So, before we

start, file_one exists and file_two doesn't. The AND list finds the file_one, and echos

the word hello, but it doesn't find the file file_two. Therefore the overall if fails and

the else clause is executed.

The OR List

The OR list construct allows us to execute a series of commands until one succeeds!

statement1 || statement2 || statement3 || ...

Here is a sample Or list

rm -f file_one

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 111

if [-f file_one] || echo "hello" || echo " there"

then

echo "in if"

else

echo "in else"

fi

exit 0

How It Works

The above script removes the file file_one, then test for and fails to find the file_one,

but does successfully echo hello. It then executes the then statement echoing in if.

Statement Blocks

Multiple statements can be placed inside of { } to make a statement block.

Functions

You can define functions inthe shell. The syntax is:

function_name () {

statements

}

Here is a sample function and its execution.

#!/bin/sh

foo() {

echo "Function foo is executing"

}

echo "script starting"

foo

echo "script ended"

exit 0

How It Works

When the above script runs, it defines the funcion foo, then script echos script

starting, then it runs the functions foo which echos Function foo is executing, then it

echo script ended.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 112

Here is another sample script with a function in it. Save it as my_name

#!/bin/sh

yes_or_no() {

echo "Parameters are $*"

while true

do

echo -n "Enter yes or no"

read x

case "$x" in

y | yes) return 0;;

n | no) return 1;;

*) echo "Answer yes or no"

esac

done

}

echo "Original parameters are $*"

if yes_or_no "IS your naem $1"

then

echo "Hi $1"

else

echo "Never mind"

fi

exit 0

How It Works

When my_name is execute with the statement:

my_name Rick and Neil

. gives the output of:

Original parameters are Rick and Neil

Parameters are Is your name Rick

Enter yes or no

no

Never mind

Commands

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 113

You can execute normal command and built-in commands from a shell script. Built-in

commands are defined and only run inside of the script.

break

It is used to escape from an enclosing for, while or until loop before the controlling

condition has been met.

The : Command

The colon command is a null command. It can be used for an alias for true..

continue

The continue command makes the enclosing for, while, or until loop continue at the

next iteration.

The . Command

The dot command executes the command in the current shell:

. shell_script

.

echo

The echo command simply outputs a string to the standard output device followed by

a newline character.

eval

The eval command evaluates arguments and give s the results.

exec

The exec command can replace the current shell with a different program. It can also

modify the current file descriptors.

exit n

The exit command causes the script to exit with exit code n. An exit code of 0 means

success. Here are some other codes.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 114

export

The export command makes the variable named as its parameter available in

subshells.

expr

The expr command evaluates its arguments as an expression.

x = `expr $x + 1`

Here are some of its expression evaluations

printf

The printf command is only available in more recent shells. It works similar to the

echo command. Its general form is:

printf "format string" parameter1 parameter2 ...

Here are some characters and format specifiers.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 115

return

The return command causes functions to return. It can have a value parameter which it

returns.

set

The set command sets the parameter variables for the shell.

shift

The shift command moves all the parameters variables down by one, so $2 becomes

$1, $3 becomes $2, and so on.

trap

The trap command is used for secifying the actions to take on receipt of signals. It

syntax is:

trap command signal

Here are some of the signals.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 116

How It Works

The try it out section has you type in a shell script to test the trap command. It creates

a file and keeps saying that it exists until youu cause a control-C interrupt. It does it

all again.

unset

The unset command removes variables or functions from the environment.

Command Execution

The result of $(command) is simply the output string from the command, which is

then available to the script.

Arithmetic Expansion

The $((...)) is a better alternative to the expr command, which allows simple

arithmetic commands to be processed.

x=$(($x+1))

Parameter Expansion

Using { } around a variable to protect it against expansion.

#!/bin/sh

for i in 1 2

do

my_secret_process ${i}_tmp

done

Here are some of the parameter expansion

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 117

How It Works

The try it out exercise uses parameter expansion to demonstrate how parameter

expansion works.

Here Documents

A here document is a special way of passing input to a command from a shell script.

The document starts and ends with the same leader after <<. For example:

#!/bin/sh

cat < this is a here

document

!FUNKY!

How It Works

It executes the here document as if it were input commands.

Debugging Scripts

When an error occurs in a script, the shell prints out the line number with an error.

You can use the set command to set various shell option. Here are some of them.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 118

Putting It All Together

The rest of this chapter is about designing a CD database application.

Requirements

The system should store basic information about each CD, search for CDs, and update

or add new CDs.

Design

The three requirements--updating, searching and displaying the CD data--suggest that

a simple menu willbe adequate. Here is the example titles file.

Here is the associated track file.

Notes

The code for the CD database is included in the try it out section. The trap command

allows the user to use Ctrl-C.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 119

Summary

By the time you enter the CD database application, you will know that programs can

be written using just the shell language. The shell is used for much of Linux system

administration.

"Unit Three - Working with Files"

Chapter Outline

Working with Files

UNIX File Structure

Directories

Files and Devices

System Calls and Device Drivers

Library Functions

Low-level File Access

Other System Calls for Managing Files

The Standard I/O Library

Formatted Input and Output

Other Stream Functions

Stream Errors

Stream and File Descriptors

File and Directory Maintenance

Scanning Directories

Errors

Advanced

Summary

Lecture Notes

Working with Files

In this chapter we learn how to create, open, read, write, and close files.

UNIX File Structure

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 120

In UNIX, everything is a file.

Programs can use disk files, serial ports, printers and other devices in the exactly the

same way as they would use a file.

Directories, too, are special sorts of files.

Directories

As well as its contents, a file has a name and 'administrative information', i.e. the file's

creation/modification date and its permissions.

The permissions are stored in the inode, which also contains the length of the file and

where on the disc it's stored.

A directory is a file that holds the inodes and names of other files.

Files are arranged in directories, which also contain subdirectories.

A user, neil, usually has his files stores in a 'home' directory, perhaps /home/neil.

Files and Devices

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 121

Even hardware devices are represented (mapped) by files in UNIX. For example,

as root, you mount a CD-ROM drive as a file,

$ mount -t iso9660 /dev/hdc /mnt/cd_rom

$ cd /mnt/cd_rom

/dev/console - this device represents the system console.

/dev/tty - This special file is an alias (logical device) for controlling terminal

(keyboard and screen, or window) of a process.

/dev/null - This is the null device. All output written to this device is discarded.

System Calls and Device Drivers

System calls are provided by UNIX to access and control files and devices.

A number of device drivers are part of the kernel.

The system calls to access the device drivers include:

Library Functions

To provide a higher level interface to device and disk files, UNIIX provides a number

of standard libraries.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 122

Low-level File Access

Each running program, called a process, has associated with it a number of file

descriptors.

When a program starts, it usually has three of these descriptors already opened. These

are:

The write system call arranges for the first nbytes bytes from buf to be written to the

file associated with the file descriptor fildes.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 123

With this knowledge, let's write our first program, simple_write.c:

Here is how to run the program and its output.

$ simple_write

Here is some data

$

read

The read system call reads up to nbytes of data from the file associated with the file

decriptor fildes and places them in the data area buf.

This program, simple_read.c, copies the first 128 bytes of the standard input to the

standard output.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 124

If you run the program, you should see:

$ echo hello there | simple_read

hello there

$ simple_read < draft1.txt

Files

open

To create a new file descriptor we need to use the open system call.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 125

open establishes an access path to a file or device.

The name of the file or device to be opened is passed as a parameter, path, and

the oflags parameter is used to specify actions to be taken on opening the file.

The oflags are specified as a bitwise OR of a mandatory file access mode and other

optional modes. The open call must specify one of the following file access modes:

The call may also include a combination (bitwise OR) of the following optional

modes in the oflags parameter:

Initial Permissions

When we create a file using the O_CREAT flag with open, we must use the three

parameter form. mode, the third parameter, is made form a bitwise OR of the flags

defined in the header file sys/stat.h. These are:

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 126

Foe example

Has the effect of creating a file called myfile, with read permission for the owner and

execute permission for others, and only those permissions.

umask

The umask is a system variable that encodes a mask for file permissions to be used

when a file is created.

You can change the variable by executing the umask command to supply a new

value.

The value is a three-digit octal value. Each digit is the results of ANDing values from

1, 2, or 4.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 127

For example, to block 'group' write and execute, and 'other' write, the umask would

be:

Values for each digit are ANDed together; so digit 2 will have 2 & 1, giving 3. The

resulting umask is 032.

close

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 128

We use close to terminate the association between a file descriptor, fildes, and its file.

ioctl

ioctl is a bit of a rag-bag of things. It provides an interface for controlling the behavior

of devices, their descriptors and configuring underlying services.

ioctl performs the function indicated by cmd on the object referenced by the

descriptor fildes.

Try It Out - A File Copy Program

We now know enough about the open, read and write system calls to write a low-

level program, copy_system.c, to copy one file to another, character by character.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 129

Running the program will give the following:

We used the UNIX time facility to measure how long the program takes to run. It

took 2 and one half minutes to copy the 1Mb file.

We can improve by copying in larger blocks. Here is the

improved copy_block.c program.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 130

Now try the program, first removing the old output file:

The revised program took under two seconds to do the copy.

Other System Calls for Managing Files

Here are some system calls that operate on these low-level file descriptors.

lseek

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 131

The lseek system call sets the read/write pointer of a file descriptor, fildes. You use it

to set where in the file the next read or write will occur.

The offset parameter is used to specify the position and the whence parameter

specifies how the offset is used.

whence can be one of the following:

fstat, stat and lstat

The fstat system call returns status information about the file associated with an open

file descriptor.

The members of the structure, stat, may vary between UNIX systems, but will

include:

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 132

The permissions flags are the same as for the open system call above. File-type flags

include:

Other mode flags include:

Masks to interpret the st_mode flags include:

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 133

There are some macros defined to help with determining file types. These include:

To test that a file doesn't represent a directory and has execute permisson set for the

owner and no other permissions, we can use the test:

dup and dup2

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 134

The dup system calls provide a way of duplicating a file descriptor, giving two or

more, different descriptors that access the same file.

The Standard I/O Library

The standard I/O library and its header file stdio.h, provide a versatile interface to

low-level I/O system calls.

Three file streams are automatically opened when a program is started. They

are stdin, stdout, and stderr.

Now, let's look at:

fopen

The fopen library function is the analog of the low level open system call.

fopen opens the file named by the filename parameter and associates a stream with it.

The mode parameter specifies how the file is to be opened. It's one of the following

strings:

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 135

If successful, fopen returns a non-null FILE * pointer.

fread

The fread library function is used to read data from a file stream. Data is read into a

data buffer given by ptr from the stream, stream.

fwrite

The fwrite library call has a similar interface to fread. It takes data records from the

specified data buffer and writes them to the output stream.

fclose

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 136

The fclose library function closes the specified stream, causing any unwritten data to

be written.

fflush

The fflush library function causes all outpstanding data on a file stream to be written

immediately.

fseek

The fseek function is the file stream equivalent of the lseek system call. It sets the

position in the stream for the next read or write on that stream.

fgetc, getc, getchar

The fgetc function returns the next byte, as a character, from a file stream. When it

reaches the end of file, it returns EOF.

The getc function is equivalent to fgetc, except that you can implement it as a macro.

The getchar function is equivalent to getc(stdin) and reads the next character from

the standard input.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 137

fputc, putc, putchar

The fputc function writes a character to an output file stream. It returns the value it

has written, or EOF on failure.

The function putc is quivalent to fputc, but you may implement it as a macro.

The putchar function is equivalent to putc(c,stdout), writing a single character to the

standard output.

fgets, gets

The fgets function reads a string from an input file stream. It writes characters to the

string pointed to by s until a newline is encountered, n-1 characters have been

transferred or the end of file is reached.

Formatted Input and Output

There are library functions for producing output in a controlled fashion.

printf, fprintf and sprintf

The printf family of functions format and output a variable number of arguments of

different types.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 138

Ordinary characters are passed unchanged into the output. Conversion specifiers

cause printf to fetch and format additional argumetns passed as parameters. They are

start with a %.

For example

which produces, on the standard output:

Some numbers: 1, 2, and 3

Here are some of the most commonly used conversion specifiers:

Here's another example:

This produces:

Hello Miss A Mathew, aged 6.5

Field specifiers are given as numbers immediatley after the % character in a

conversion specifier. Theya re used to make things clearer.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 139

The printf function returns an integer, the number of characters written.

scanf, fscanf and sscanf

\

The scanf family of functions work in a similar way to the printf group, except that

thye read items from a stream and place vlaues into variables.

The format string for scanf and friends contains both ordinary characters and

conversion specifiers.

Here is a simple example:

The call to scanf will succeed and place 1234 into the variable num given either if the

following inputs.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 140

Other conversion specifiers are:

Given the input line,

this call to scanf will correctly scan four items:

In general, scanf and friends are not highly regarded, for three reasons:

Other Stream Functions

Other library functions use either stream paramters or the standard streams stdin,

stdout, stderr:

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 141

You can use the file stream functions to re-implement the file copy program, by using

library functions.

Try It Out - Another File Copy Program

This program does the character-by-character copy is accomplished using calls to the

functions referenced in stdio.h.

Running this program as before, we get:

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 142

$ time copy_stdio

1.69user 0.78system 0:03.70elapsed 66%CPU

This time, the program runs in 3.7 seconds.

Stream Errors

To indicate an error, many of the stdio library functions return out of range values,

such as null pointers or the constant EOF.

In these cases, the error is indicated in the external variable errno:

You can also interrogate the state of a file stream to determine whether an error has

occurred, or the end of file has been reached.

The ferror function tests the error indicator for a stream and returns non-zero if its

set, zero otherwise.

The feof function tests the end-of-file indicator within a stream and returns non-zero if

it is set zero otherwise.

You use it like this:

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 143

The clearerr function clears the end-of-file and error indicators for the stream to

which stream points.

Streams and File Descriptors

Each file stream is associated with a low level file descriptor.

You can mix low-level input and output operations with higher level stream

operations, but this is generally unwise.

The effects of buffering can be difficult to predict.

File and Directory Maintenance

The standard libraries and system calls provide complete control over the creation and

maintenance of files and directories.

chmod

You can change the permissions on a file or directory using the chmod system call.

Tis forms the basis of the chmod shell program.

chown

A superuser can change the owner of a file using the chown system call.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 144

unlink, link, symlink

We can remove a file using unlink.

The unlink system call edcrements the link count on a file.

The link system call cretes a new link to an existing file.

The symlink creates a symbolic link to an existing file.

mkdir, rmdir

We can create and remove directories using the mkdir and rmdir system calls.

The mkdir system call makes a new directory with path as its name.

The rmdir system call removes an empty directory.

chdir, getcwd

A program can naviagate directories using the chdir system call.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 145

A program can determine its current working directory by calling the getcwd library

function.

The getcwd function writes the name of the current directory into the given

buffer, buf.

Scanning Directories

The directory functions are declared in a header file, dirent.h. They use a

structure, DIR, as a basis for directory manipulation.

Here are these functions:

opendir

The opendir function opens a directory and establishes a directory stream.

readdir

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 146

The readdir function returns a pointer to a structure detailing the next directory entry

in the directory stream dirp.

The dirent structure containing directory entry details included the following entries:

telldir

The telldir function returns a value that records the current position in a directory

stream.

seekdir

The seekdir function sets the directory entry pointer in the directory stream given

by dirp.

closedir

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 147

The closedir function closes a directory stream and frees up the resources associated

with it.

Try It Out - A Directory Scanning Program

1. The printdir, prints out the current directory. It will recurse for subdirectories.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 148

2. Now we move onto the main function:

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 149

The program produces output like this (edited for brevity):

How It Works

After some initial error checking, using opendir, to see that the directory

exists, printdir makes a call to chdir to the directory specified. While the entries

returned by readdir aren't null, the program checks to see whether the entry is a

directory. If it isn't, it prints the file entry with indentation depth.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 150

Here is one way to make the program more general.

You can run it using the command:

$ printdir /usr/local | more

Errors

System calls and functions can fail. When they do, they indicate the reason for their

failure by setting the value of the external varaible errno.

The values and meanings of the errors are listed in the header file errno.h. They

include:

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 151

There are a couple of useful functions for reporting errors when they

occur: strerror and perror.

The strerror function maps an error number into a string describing the type of error

that has occurred.

The perror function also maps the current error, as reported in errno, into a string

and prints it on the standard error stream.

It's preceded by the message given in the string s (if not null), followed by a colon

and a space. For example:

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 152

might give the following on the standard error output:

Advanced Topics

fcntl

The fcntl system call provides further ways to manipulate low level file descriptors.

It can perform miscellaneous operations on open file descriptors.

The call,

returns a new file descriptor with a numerical value equal to or greater than the

integer newfd.

The call,

returns the file descriptor flags as defined in fcntl.h.

The call,

is used to set the file descriptor flags, usually just FD_CLOEXEC.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 153

The calls,

respectively get and set the file status flags and access modes.

mmap

The mmap function creates a pointer to a region of memory associated with the

contents of the file accessed through an open file descriptor.

You can use the addr parameter to request a particular memory address.

The prot parameter is used to set access permissions for the memory segment. This is

a bitwise OR of the following constant values.

The flags parameter controls how changes made to the segment by the program are

reflected elsewhere.

The msync function causes the changes in part or all of the memory segment to be

written back to (or read from) the mapped file.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 154

The part of the segment to be updated is given by the passed start address, addr, and

length, len. The flags parameter controls how the update should be performed.

The munmap function releases the memory segment.

Try It Out - Using mmap

1. The following program, mmap_eg.c shows a file of structures being updated

using mmap and array-style accesses.

Here is the definition of the RECORD structure and the create NRECORDS versions

each recording their number.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 155

2. We now change the integer value of record 43 to 143, and write this to the 43rd

record's string:

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 156

3. We now map the records into memory and access the 43rd record in order to

change the integer to 243 (and update the record string), again using memory

mapping:

Summary

This chapter showed how LINUX provides direct access to files and devices..

"Unit Four - Processes and Signals"

Chapter Outline

Processes and Signals

What is a Process

Process Structure

The Process Table

Viewing Processes

System Processes

Process Scheduling

Starting New Processes

Waiting for a Process

Zombie Processes

Input and Output Redirection

Threads

Signals

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 157

Sending Signals

Signal Sets

Summary

Lecture Notes

Processes and Signals

Processes and signals form a fundamental part of the UNIX operating environment,

controlling almost all activities performed by a UNIX computer system.

Here are some of the things you need to understand.

What is a Process?

The X/Open Specification defines a process as an address space and single thread of

control that executes within that address space and its required system resources.

A process is, essentially, a running program.

Process Structure

Here is how a couple of processes might be arranged within the operationg system.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 158

Each process is allocated a unique number, a process identifier, or PID.

The program code that will be executed by the grep command is stored in a disk file.

The system libraries can also be shared.

A process has its own stack space.

The Process Table

The UNIX process table may be though of as a data structure describing all of the

processes that are currently loaded.

Viewing Processes

We can see what processes are running by using the ps command.

Here is some sample output:

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 159

The PID column gives the PIDs, the TTY column shows which terminal started the

process, the STAT column shows the current status, TIME gives the CPU time used

so far and the COMMAND column shows the command used to start the process.

Let's take a closer look at some of these:

The initial login was performed on virtual console number one (v01). The shell is

running bash. Its status is s, which means sleeping. Thiis is because it's waiting for

the X Windows sytem to finish.

X Windows was started by the command startx. It won't finished until we exit from

X. It too is sleeping.

The fvwm is a window manager for X, allowing other programs to be started and

windows to be arranged on the screen.

This process represents a window in the X Windows system. The shell, bash, is

running in the new window. The window is running on a new pseudo terminal

(/dev/ptyp0) abbreviated pp0.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 160

This is the EMACS editor session started from the shell mentioned above. It uses the

pseudo terminal.

This is a clock program started by the window manager. It's in the middle of a one-

minute wait between updates of the clock hands.

System Processes

Let's look at some other processes running on this Linux system. The output has been

abbreviated for clarity:

Here we can see one very important process indeed:

In general, each process is started by another, known as its parent process. A process

so started is known as a child process.

When UNIX starts, it runs a single program, the prime ancestror and process number

one: init.

One such example is the login procedure init starts the getty program once for each

terminal that we can use to long in.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 161

These are shown in the ps output like this:

Process Scheduling

One further ps output example is the entry for the ps command itself:

This indicates that process 192 is in a run state (R) and is executing the command ps-

ax.

We can set the process priority using nice and adjust it using renice, which reduce the

priority of a process by 10. High priority jobs have negative values.

Using the ps -l (forlong output), we can view the priority of processes. The value we

are interested in is shown in the NI (nice) column:

Here we can see that the oclock program is running with a default nice value. If it had

been stated with the command,

it would have been allocated a nice value of +10.

We can change the priority of a ruinning process by using the renice command,

So that now the clock program will be scheduled to run less often. We can see the

modified nice value with the ps again:

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 162

Notice that the status column now also contains N, to indicate that the nice value has

changed from the default.

Starting New Processes

We can cause a program to run from inside another program and thereby create a new

process by using the system. library function.

The system function runs the command passed to it as string and waits for it to

complete.

The command is executed as if the command,

has been given to a shell.

Try It Out - system

1. We can use system to write a program to run ps for us.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 163

2. When we compile and run this program, system.c, we get the following:

3. The system function uses a shell to start the desired program.

We could put the task in the background, by changing the function call to the

following:

Now, when we compile and run this version of the program, we get:

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 164

How It Works

In the first example, the program calls system with the string "ps -ax", which

executes the ps program. Our program returns from the call to system when

the ps command is finished.

In the second example, the call to system returns as soon as the shell command

finishes. The shell returns as soon as the ps program is started, just as would happen if

we had typed,

at a shell prompt.

Replacing a Process Image

There is a whole family of related functions grouped under the exec heading. They

differ in the way that they start processes and present program arguments.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 165

The exec family of functions replace the current process with another created

according to the arguments given.

If we wish to use an exec function to start the ps program as in our previous examples,

we have the following choices:

Try It Out - exclp

Let's modify our example to use an exexlp call.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 166

Now, when we run this program, pexec.c, we get the usual ps output, but no Done.

message at all.

Note also that there is no reference to a process called pexec in the output:

How It Works

The program prints its first message and then calls execlp, which searches the

directories given by the PATH environment variable for a program called ps.

It then executes this program in place of our pexec program, starting it as if we had

given the shell command:

Duplicating a Process Image

To use processes to perform more than one function at a time, we need to create an

entirely separate process from within a program.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 167

We can create a new process by calling fork. This system call duplicates the current

process.

Combined with exec, fork is all we need to create new processes to do our bidding.

The fork system call creates a new child process, identical to the calling process

except that the new process has a unique process ID and has the calling process as its

parent PID.

A typical code fragment using fork is:

Try It Out - fork

Let's look at a simple example, fork.c:

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 168

This program runs as two process. A child prints a message five times. The parent

prints a message only three times.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 169

How It Works

When the call to fork is made, this program divides into two separate processes.

Waiting for a Process

We can arrange for the parent process to wait until the child finishes before continuing

by calling wait.

The wait system call causes a parent process to pause until one of its child processes

dies or is stopped.

We can interrogate the status information using macros defined in sys/wait.h. These

include:

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 170

Try It Out - wait

1. Let's modify our program slightly so we can wait for and examine the child process

exit status. Call the new program wait.c.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 171

2. This section of the program waits for the child process to finish:

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 172

When we run this program, we see the parent wait for the child. The output isn't

confused and the exit code is reported as expected.

How It Works

The parent process uses the wait system call to suspend its own execution until status

information becomes available for a child process.

Zombie Processes

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 173

When a child process terminates, an association with its parent survives until the

parent in turn either terminates normally or calls wait.

This terminated child process is known as a zombie process.

Try It Out - Zombies

fork2.c is jsut the same as fork.c, except that the number of messages printed by the

child and paent porcesses is reversed.

Here are the relevant lines of code:

How It Works

If we run the above program with fork2 & and then call the ps program after the child

has finished but before the parent has finished, we'll see a line like this:

There's another system call that you can use to wail for child processes. It's

called waitpid and youu can use it to wait for a specific process to terminate.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 174

If we want to have a parent process regularly check whether a specific child process

had terminated, we could use the call,

which will return zero if the child has not terminated or stopped or child_pid if it has.

Input and Output Redirection

We can use our knowledge of processes to alter the behavior of programs by

exploiting the fact that open file descriptors are preserved across calls

to fork and exec.

Try It Out - Redirection

1. Here's a very simple filter program, upper.c, to convert all characters to uppercase:

When we run this program, it reads our input and converts it:

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 175

We can, of course, use it to convert a file to uppercase by using the shell redirection:

$ cat file.txt

this is the file, file.txt, it is all lower case.

$ upper < file.txt

THIS IS THE FILE, FILE.TXT, IT IS ALL LOWER CASE.

2. What if we want to use this filter fromwithin another program? This

code, useupper.c, accepts a file name as an argument and will respond with an error if

called incorrectly:

3. The done, we reopen the standard input, again checking for any errors as we do so,

and then use execl to call upper:

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 176

4. don't forget that execl replaces the current process; provided there is no error, the

remaining lines are not executed:

How It Works

when we run this program, we can give it a file to convert to uppercase. The job is

done by the program upper. The program is executed by:

Because open file descriptors are preserved across the call to execl,

the upper program runs exactly as it would have under the shell command:

Threads

UNIX processes can cooperate; they can send each other messages and they can

interrupt one another.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 177

There is a class of process known as a thread which are distinct from processes in

that they are separate execution streams within a single process.

Signals

A signal is an event generated by the UNIX system in response to some condition,

upon receipt of which a process may in turn take some action.

Signal names are defined in the header file signal.h. They all begin with SIG and

include:

Additional signals include:

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 178

If the shell and terminal driver are configured normally, typing the interrupt character

(Ctrl-C) at the keyboard will result in the SIGINT signal being sent to the foreground

process. This will cause the program to terminate.

We can handle signals using the signal library function.

The signal function itself returns a function of the same type, which is the previous

value of the function set up to handle this signal, or one of these tow special values:

Try It Out - Signal Handling

1. We'll start by writing the function which reacts to the signal which is passed in the

parameter sig. Let's call it ouch:

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 179

2. The main function has to intercept the SIGINT signal generated when we type

Ctrl-C.

For the rest of the time, it just sits in an infinite loop, printing a message once a

second:

3. While the program is running, typing Ctrl-C causes it to react and then continue.

When we type Ctrl-C again, the program ends:

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 180

How It Works

The program arranges for the function ouch to be called when we type Ctrl-C, which

gives the SIGINT signal.

Sending Signals

A process may send a signal to itself by calling raise.

A process may send a signal to another process, including itself, by calling kill.

Signals provide us with a useful alarm clock facility.

The alarm function call can be used by a process to schedule a SIGALRM signal at

some time in the future.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 181

Try It Out - An Alarm Clock

1. In alarm.c, the first function, ding, simulates an alarm clock:

2. In main, we tell the child process to wait for five seconds before sending

a SIGALRM signal to its parent:

3. The parent process arranges to catch SIGALRM with a call to signal and then

waits for the inevitable.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 182

When we run this program, it pauses for five seconds while it waits for the simulated

alarm clock.

This program introduces a new function, pause, which simply causes the program to

suspend execution until a signal occurs.

It's declared as,

How It Works

The alarm clock simulation program starts a new process via fork. This child process

sleeps for five seconds and then sends a SIGALRM to its parent.

 A Robust Signals Interface

X/Open specification recommends a newer programming interface for signals that is

more robust: sigaction.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 183

The sigaction structure, used to define the actions to be taken on receipt of the signal

specified by sig, is defined in signal.h and has at least the following members:

Try It Out - sigaction

Make the changes shown below so that SIGINT is intercepted by sigaction. Call the

new program ctrlc2.c.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 184

Running the program, we get a message when we type Ctrl-C because SIGINT is

handled repeated;y by sigaction.

Type Ctrl-\ to terminate the program.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 185

How It Works

The program calls sigaction instead of signal to set the signal handler for Ctrl-C

(SIGINT) to the function ouch.

Signal Sets

The header file signal.h defines the type sigset_t and functions used to manipulate

sets of signals.

The function sigismember determines whether the given signal is amember of a

signal set.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 186

The process signal mask is set or examined by calling the function sigprocmask.

sigprocmask can change the process signal mask in a number of ways according to

the how argument.

The how argument can be one of:

If a signal is blocked by a process, it won't be delivered, but will remain pending.

A program can determine which of its blocked signals ar pending by calling the

function sigpending.

A process can suspend execution until the delivery of one of a set of signals by

calling sigsuspend.

This is a more general form of the pause function we met earlier.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 187

sigaction Flags

The sa_flags field of the sigaction structure used in sigaction may contain the

following values to modify signal behavior

Functions that are safe to call inside a signal handler, those guaranteed by the X/Open

specification either to be re-entrant or not to raise signals themselves include:

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 188

Common Signal Reference

Here we list the signals that UNIX programs typically need to get involved with,

including the default behaviors:

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 189

The default action signals is abnormal termination of the process.

By default, these signals also cause abnormal termination. Additionally,

implementation-dependent actions, such as creation of a core file, may occur.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

Linux Programming

D.Koteswararao Page 190

A process is stopped by default on receipt of one of the above signals.

SIGCONT restarts a stopped process and is ignored if received by a process which is

not stopped.

The SIGCHLD signal is ignored by default.

Summary

We have seen how processes are a fundamental part of the LINUX operation system.

We have also learned to start, terminate, and signal between processes.

www.jntuworld.com

www.jntuworld.com

www.jwjobs.net

