ANURG GROUP OF INSTITUTIONS
 Venkatapur (V), Ghatkesar (M),Medchal (Dist) Telangana 500088 MATHEMATICS II $2^{\text {ND }}$ ASSINGMENT QUEESTIONS

1) Evaluate the integral by changing the order of integration $\int_{x=0}^{\infty} \int_{y=x}^{\infty} \frac{e^{-y}}{y} d y d x$
2) Change the order of integration to evaluate $\int_{0}^{4 a} \int_{\frac{x^{2}}{4 a}}^{2 \sqrt{a x}} d y d x$
3) Find the directional derivate of the function $\mathrm{f}=x^{2}-y^{2}+2 z^{2}$ at the point $\mathrm{P}(1,2,3)$ in the direction of the line PQ where $\mathrm{Q}=(5,0,4)$.
4) Find the angle between the normal's to the surface $x^{2}=y \mathrm{z}$ at the points $(1,1,1)$ and $(2,4,1)$.
5) Show that $\left(x^{2}-y z\right) i+\left(y^{2}-z x\right) j+\left(z^{2}-x y\right) k$ is Irrotational and find its scalar potential.
6) a) if $\bar{f}=x y^{2} i+2 x^{2} y z j-3 y z^{2} k$ find curl \bar{f} at $(1,-1,1)$
b)Find $\operatorname{div} \bar{f}$ if $\bar{f}=\operatorname{grad}\left(x^{3}+y^{3}+z^{3}-3 x y z\right)$
7) Find the work done in moving a particle in the force field $f=3 \mathrm{x}^{2} \mathrm{i}+\mathrm{j}+2 \mathrm{k}$ along the straight line from $(0,0,0)$ to $(1,2,3)$.
8) Evaluate $\int_{s} \bar{F} . \bar{n} d s$ where $\bar{F}=18 \mathrm{zi}-12 \mathrm{j}+3 \mathrm{yk}$ and s is the part of the surface of the plane
$2 x+3 y+6 z=12$.located in the first octant.
9) Find the Fourier series expansion of $f(x)$, if $f(x)=-\pi$ when $-\pi<x<0$
x when $0<x<\pi$.
Hence deduce that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots \ldots=\frac{\pi^{2}}{8}$
10) Find the Fourier series for $f(x)=|\sin x|$ in $-\pi<x<\pi$.
11) Find the half Range Fourier series expansion of $\mathrm{f}(\mathrm{x})=x \sin x$ in $(0, \pi)$
12) Find the Fourier series expansion of $f(x)=\frac{(\pi-x)^{2}}{4}$ in $(0,2 \pi)$

ANURG GROUP OF INSTITUTIONS

Venkatapur (V), Ghatkesar (M),Medchal (Dist) Telangana 500088 M III MID II ASSIGNMENT QUESTIONS

1. Evaluate $\int_{0}^{1} \frac{1}{1+x^{2}} d x$ using Simpson's $3 / 8$ and Weddle's rules. Hence obtain an approximate value of π.
2. The table below shows the velocities of a car at various intervals of time. Find the distance travelled by car using Simpson's Rule.

Time(min.)	0	2	4	6	8	10	12
Velocity(km/hr)	0	22	30	27	18	7	0

3. Derive normal equations of first, second degree equations using the method of least squares.
4. (i) Fit a parabola for the following data using the method of least squares

X	2	4	6	8	10
Y	3.07	12.85	31.47	57.38	91.29

(ii) Fit curves of the form $y=a b^{x}, y=a x^{b}$ for the following data using the method of least squares

X	2	3	4	5	6
Y	8.3	15.4	33.1	65.2	127.4

5. Using Picard's method up to fourth approximation, Solve $y^{\prime}=y-x^{2}, y(0)=1$. Hence find the values of $\mathrm{y}(0.1), \mathrm{y}(0.2)$
6. Use (i) Milne's, (ii) Adam's Predictor-Corrector methods to obtain a solution at $x=0.8$. Given that $\mathrm{y}(0)=0, \mathrm{y}(0.2)=0.02, \mathrm{y}(0.4)=0.0795 \& \mathrm{y}(0.6)=0.1762$
7.Find $y(1.1), y(1.2)$ and $y(1.3)$ Using (i) RK method IV order formula, (ii) Modified Euler's Formula and (iii) Taylor series method for the IVP $\frac{d y}{d x}=x^{+} \mathrm{y}$ with $\mathrm{y}(1)=0$.
7. (i). Form a P.D.E by eliminating arbitrary function from $f\left(x+y+z, x^{2}+y^{2}+z^{2}\right)=0$
(ii) Form a P.D.E corresponding to the equation $\mathrm{z}=\mathrm{a} \log \left[\frac{b(y-1)}{1-x}\right]$
8. Solve (i) $y^{2} z p+x^{2} z q=y^{2} x$.
(ii) Solve (mz-ny) $p+(n x-l z) q=1 y-m x$.
