ANURG GROUP OF INSTITUTIONS

Venkatapur (V), Ghatkesar (M), Medchal (Dist) Telangana 500 088

MATHEMATICS II 2ND ASSINGMENT QUEESTIONS

- 1) Evaluate the integral by changing the order of integration $\int_{x=0}^{\infty} \int_{y=x}^{\infty} \frac{e^{-y}}{y} dy dx$
- 2) Change the order of integration to evaluate $\int_{0}^{4a} \int_{\frac{x^2}{4a}}^{2\sqrt{ax}} dy dx$
- 3) Find the directional derivate of the function $f = x^2 y^2 + 2z^2$ at the point P(1,2,3) in the direction of the line PQ where Q=(5,0,4).
- 4) Find the angle between the normal's to the surface $x^2 = yz$ at the points (1,1,1) and (2,4,1).
- 5) Show that $(x^2 yz)i + (y^2 zx)j + (z^2 xy)k$ is Irrotational and find its scalar potential.
- 6) a) if $\overline{f} = xy^2i + 2x^2yzj 3yz^2k$ find curl \overline{f} at (1,-1,1) b)Find div \overline{f} if $\overline{f} = \operatorname{grad}(x^3 + y^3 + z^3 - 3xyz)$

7) Find the work done in moving a particle in the force field $f = 3x^2 i + j + 2k$ along the straight line from (0,0,0) to (1,2,3).

8) Evaluate $\int_{s} \overline{F} \cdot \overline{n} ds$ where $\overline{F} = 18zi-12j+3yk$ and s is the part of the surface of the plane

2x+3y+6z=12 .located in the first octant.

9) Find the Fourier series expansion of f(x), if $f(x) = -\pi$ when $-\pi < x < 0$

x when $0 < x < \pi$.

Hence deduce that
$$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$$

10) Find the Fourier series for $f(x) = |\sin x|$ in $-\pi < x < \pi$.

11) Find the half Range Fourier series expansion of $f(x) = x \sin x$ in $(0,\pi)$

12) Find the Fourier series expansion of $f(x) = \frac{(\pi - x)^2}{4}$ in (0,2 π)

ANURG GROUP OF INSTITUTIONS

Venkatapur (V), Ghatkesar (M), Medchal (Dist) Telangana 500 088

M III MID II ASSIGNMENT QUESTIONS

1. Evaluate $\int_{0}^{1} \frac{1}{1+x^2} dx$ using Simpson's 3/8 and Weddle's rules. Hence obtain an approximate

value of π .

2. The table below shows the velocities of a car at various intervals of time. Find the distance travelled by car using Simpson's Rule.

Time(min.)	0	2	4	6	8	10	12
Velocity(km/hr)	0	22	30	27	18	7	0

3. Derive normal equations of first, second degree equations using the method of least squares.

4. (i) Fit a parabola for the following data using the method of least squares

Х	2	4	6	8	10
Y	3.07	12.85	31.47	57.38	91.29

(ii) Fit curves of the form $y=ab^x$, $y=ax^b$ for the following data using the method of least squares

Х	2	3	4	5	6
Y	8.3	15.4	33.1	65.2	127.4

5. Using Picard's method up to fourth approximation, Solve $y'=y-x^2$, y(0) = 1. Hence find the values of y(0.1), y(0.2)

6. Use (i) Milne's, (ii) Adam's Predictor-Corrector methods to obtain a solution at x=0.8. Given that y(0)=0, y(0.2)=0.02, y(0.4)=0.0795 & y(0.6)=0.1762

7.Find y(1.1), y(1.2) and y(1.3) Using (i) RK method IV order formula, (ii) Modified Euler's Formula and (iii) Taylor series method for the IVP $\frac{dy}{dx} = x^+ y$ with y(1)=0.

8. (i).Form a P.D.E by eliminating arbitrary function from $f(x + y + z, x^2 + y^2 + z^2) = 0$

(ii) Form a P.D.E corresponding to the equation $z = a \log \left[\frac{b(y-1)}{1-x}\right]$

- 9. Solve (i) $y^2 z p + x^2 z q = y^2 x$.
- (ii) Solve (mz-ny) p + (nx-lz) q = ly-mx.