ANURAG GROUP OF INSTITUTIONS (AUTONOMOUS)

II B. Tech – I Semester Assignment Paper – I 2018 – 19 Subject:MECHANICS OF SOLIDS

DEPARTMENT OF MECHANICAL ENGINEERING

- 1. a) Define Stress and Strain? (Level 2) (CO -1)
 - b) A rod 200mm long and of diameter 3 cm is subjected to an axial pull of 30 KN. If the Young's Modulusof the material rod is $2 \times 10^5 \text{ N/mm}^2$, Determine 1. Stress 2. Strain 3. Elongation of the rod.(Level 3) (CO -1)
- 2. a) State Hooke's Law?(Level 2) (CO -1)
 - b) A brass bar, having cross-section area of 900 mm², is subjected to axial forces as shown in **Fig.1** in which AB=0.6m, BC=0.8m and CD=1.0 m. Find the elongation of the bar. Take $E = 2 \times 10^5 \text{ N/mm}^2$. (Level 3) (CO -1)
- 3. a) Define Poisons Ratio?(Level 2) (CO -1)
 - b)Determine the values of young's modulus and poisons ratio of metallic bar of length 25 cm breadth of 3 cm and depth 2 cm when the bar is subjected to an axial compressive load of 240 KN. decrease in length is given as 0.05 cm increase in breadth is 0.002 cm. (Level 3) (CO -1)
- 4. A tension of a bar 5 m long is made up of two parts 3 m of its length has a cross sectional area of 10cm² the remaining 2m has a cross sectional area of 20 cm². An axial load of 80 kN.is gradually applied. Find the total strain energy produced in the bar and compare this value with that obtained in a uniform bar of the same length and having the same volume when under the same load. Take E=2*10⁵ N/mm².(Level 3) (CO -1)
- 5. A cantilever beam of length 2m carries the point loads as shown in **Fig. 2**. Draw SFD and BMD for the cantilever beam.(Level 3) (CO 2)
- 6. Define the following terms. (Level -2) (CO -2)
 - a. Shear force
 - b. Bending moment
 - c. Uniformly distributed load
 - d. Uniformly Varying load
 - e. Cantilever beam

Fig: 2