ANURAG GROUP OF INSTITUTIONS

(AUTONOMUS)
I-B.TECH-II-SEMESTER-2017-18
I-ASSIGNMENT TEST QUESTIONS
SUBJECT: MATHEMATICS-III

- 1. Find the positive root of the equation $x \log_{10} x = 1.2$ using
 - i) Bisection Method.
- ii) Regula Falsi Method.
- 2. a) Solve $x^3 2x 5$ using fixed point iteration method.
 - b) Explain Geometrical interpretation of Newton Raphson Method.
- 3. a) Find the root of the equation xe^x -cosx = 0 using Newton Raphson Method.
 - b) Derive the formulae to find K^{th} root of a number. Hence find the value of $\sqrt[3]{2}$ using Newton Raphson Method.
- 4. Solve the following system of equation by L-U Decomposition Method

$$2x-3y+10z = 3$$
, $-x+4y+2z = 20$, $5x+2y+z = -12$

- 5. Solve the following system by a) Jacobi's Method. b) Gauss seidal Method and compare the results. 10x+y+z=12, 2x+2y+10z=14, 2x+10y+z=13,
- 6. For X = 0, 1, 2, 3, 4; f(x) = 1,14,15,5,6 find f(3) using Newton forward Interpolation and Newton Backward Interpolation formulae.
- 7. Find f(32) using Gauss Interpolation Formula

	_	_	30		_	_
f(x)	354	332	291	260	231	204

8. a)Fit a polynomial for the following data by using Newton Forward interpolation Formula.

X	0	1	2	3
f(x)	1	3	7	13

b) Find y(25) using Gauss Backward Interpolation Formulae to the following data.

X	20	24	28	32
F(x)	24	32	35	40

- 9. a) Evaluate f(10) given f(x) = 168,192,336 at x = 1,7,15 respectively using Lagrange's Interpolation Formulae.
 - b) Find the missing term in the following data

X	0	1	2	3	4
у	1	3	9		81

- 10.a) Find the 2^{nd} Difference of the polynomial x^4 - $12x^3$ + $42x^2$ -30x+9 with the interval of differencing h =2.
 - b) Find the polynomial for the following data

X	1	2	-4
F(x)	3	-5	4