ANURAG GROUP OF INSTITUTIONS

Autonomous

Venkatapur (v), Ghatkesar (M), MedchalDist. **I.B.Tech I Semester**

MATHEMATICS-I

ASSIGNMENT-I

- 1. Define following
 - a). Hermitian matrix b). Skew Hermitian matrix c). Unitary matrix d). Orthogonal matrix.
 - 2. Define rank of a matrix. Find the rank of matrice $\begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 4 & 8 & 7 & 5 \end{bmatrix}$
 - 3. Find the rank of following matrices by reducing it to Normal form

a).
$$\begin{bmatrix} 0 & 1 & 2 & -2 \\ 4 & 0 & 2 & 6 \\ 2 & 1 & 3 & 1 \end{bmatrix}$$
 b).
$$\begin{bmatrix} 2 & -2 & 0 & 6 \\ 4 & 2 & 0 & 2 \\ 1 & -1 & 0 & 3 \\ 1 & -2 & 1 & 2 \end{bmatrix}$$

4. Investigate for what values of λ and μ the simultaneous equations 2x + 3y + 5z = 9,

$$7x + 3y - 2z = 8$$
, $2x + 3y + \lambda z = \mu$ have

- (i) no solution (ii) a unique solution iii) an infinite number of solutions
- 5. Show that the only real number λ for which the system $x + 2y + 3z = \lambda x$, $3x + y + 2z = \lambda y$, $2x + 3y + z = \lambda z$ has non zero solution is 6 and solve them when $\lambda = 6$.
 - 6. Solve the following equations using Gauss Elimination method

$$2x_1 + x_2 + x_3 = 10$$
, $3x_1 + 2x_2 + 3x_3 = 18$, $x_1 + 4x_2 + 9x_3 = 16$

7. Solve the following equations using Gauss Jordan method

$$10x_1 + x_2 + x_3 = 12$$
, $x_1 + 10x_2 - x_3 = 10$, $2x_1 - 2x_2 + 10x_3 = 9$.

8. a). Define Eigen values and Eigen vector of a matrix.

Find Eigen values and Eigen vectors of the following matrices

$$(i) \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix} \quad (ii). \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix} (iii) \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix} (iv) \begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{bmatrix}$$

$$(v) \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$

9. State Cayley Hamilton theorem.

Verify Cayley Hamilton theorem for the following matrices find its inverse.

(i)
$$\begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$
 (ii)
$$\begin{bmatrix} 7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1 \end{bmatrix}$$
 (iii)
$$\begin{bmatrix} 2 & -1 & 2 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$
 also find A^4 .

10. Diagonalize the matrix
$$A = \begin{bmatrix} -3 & -7 & -5 \\ 2 & 4 & 3 \\ 1 & 2 & 2 \end{bmatrix}$$
 if possible.